Analytical solutions for rheological processes around bores and tunnels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-08-17

AUTHORS

Tamás Fülöp, Mátyás Szücs

ABSTRACT

Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed. More... »

PAGES

1

References to SciGraph publications

  • 2014-11-20. Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 1962-01. On the linear theory of viscoelasticity in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10665-022-10235-6

    DOI

    http://dx.doi.org/10.1007/s10665-022-10235-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150325920


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Montavid Research Group, 6 T\u00e1ncos st., 1112, Budapest, Hungary", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, M\u0171egyetem rkp. 3., 1111, Budapest, Hungary", 
                "Montavid Research Group, 6 T\u00e1ncos st., 1112, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "F\u00fcl\u00f6p", 
            "givenName": "Tam\u00e1s", 
            "id": "sg:person.011174613407.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011174613407.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Montavid Research Group, 6 T\u00e1ncos st., 1112, Budapest, Hungary", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, M\u0171egyetem rkp. 3., 1111, Budapest, Hungary", 
                "Montavid Research Group, 6 T\u00e1ncos st., 1112, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sz\u00fccs", 
            "givenName": "M\u00e1ty\u00e1s", 
            "id": "sg:person.010164432133.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164432133.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00253942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017932458", 
              "https://doi.org/10.1007/bf00253942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00161-014-0392-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047915646", 
              "https://doi.org/10.1007/s00161-014-0392-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-17", 
        "datePublishedReg": "2022-08-17", 
        "description": "Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra\u2019s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10665-022-10235-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1041781", 
            "issn": [
              "0022-0833", 
              "1573-2703"
            ], 
            "name": "Journal of Engineering Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "136"
          }
        ], 
        "keywords": [
          "analytical solution", 
          "ordinary differential equations", 
          "corresponding elastic problem", 
          "differential equations", 
          "viscoelastic case", 
          "time variable", 
          "appropriate decomposition", 
          "Volterra principle", 
          "elastic problem", 
          "isotropic solids", 
          "direct realization", 
          "solution", 
          "initial stress field", 
          "equations", 
          "temporal behavior", 
          "realization", 
          "stress field", 
          "principles", 
          "problem", 
          "field", 
          "decomposition", 
          "rheological processes", 
          "variables", 
          "bore", 
          "solids", 
          "process", 
          "cases", 
          "behavior", 
          "tunnel"
        ], 
        "name": "Analytical solutions for rheological processes around bores and tunnels", 
        "pagination": "1", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150325920"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10665-022-10235-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10665-022-10235-6", 
          "https://app.dimensions.ai/details/publication/pub.1150325920"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_918.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10665-022-10235-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10235-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10235-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10235-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10235-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      21 PREDICATES      58 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10665-022-10235-6 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0103
    4 anzsrc-for:09
    5 anzsrc-for:0913
    6 schema:author N1c2a26f973a0402ca7a775ff18c26602
    7 schema:citation sg:pub.10.1007/bf00253942
    8 sg:pub.10.1007/s00161-014-0392-3
    9 schema:datePublished 2022-08-17
    10 schema:datePublishedReg 2022-08-17
    11 schema:description Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N7b563f09e8094adeb336ffb1fd44f8ac
    15 Nf8a00ba51a0741d48955ee4c19978fcf
    16 sg:journal.1041781
    17 schema:keywords Volterra principle
    18 analytical solution
    19 appropriate decomposition
    20 behavior
    21 bore
    22 cases
    23 corresponding elastic problem
    24 decomposition
    25 differential equations
    26 direct realization
    27 elastic problem
    28 equations
    29 field
    30 initial stress field
    31 isotropic solids
    32 ordinary differential equations
    33 principles
    34 problem
    35 process
    36 realization
    37 rheological processes
    38 solids
    39 solution
    40 stress field
    41 temporal behavior
    42 time variable
    43 tunnel
    44 variables
    45 viscoelastic case
    46 schema:name Analytical solutions for rheological processes around bores and tunnels
    47 schema:pagination 1
    48 schema:productId N23274e9fe231438b824e5349673e390e
    49 Ne7d6c68774c54d899e552e84b886cdb6
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150325920
    51 https://doi.org/10.1007/s10665-022-10235-6
    52 schema:sdDatePublished 2022-12-01T06:44
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N18f17042d65d492eb11865ccde086dde
    55 schema:url https://doi.org/10.1007/s10665-022-10235-6
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N18f17042d65d492eb11865ccde086dde schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N1c2a26f973a0402ca7a775ff18c26602 rdf:first sg:person.011174613407.91
    62 rdf:rest Ncd28712d46e64e4db957374e070d5725
    63 N23274e9fe231438b824e5349673e390e schema:name doi
    64 schema:value 10.1007/s10665-022-10235-6
    65 rdf:type schema:PropertyValue
    66 N7b563f09e8094adeb336ffb1fd44f8ac schema:volumeNumber 136
    67 rdf:type schema:PublicationVolume
    68 Ncd28712d46e64e4db957374e070d5725 rdf:first sg:person.010164432133.40
    69 rdf:rest rdf:nil
    70 Ne7d6c68774c54d899e552e84b886cdb6 schema:name dimensions_id
    71 schema:value pub.1150325920
    72 rdf:type schema:PropertyValue
    73 Nf8a00ba51a0741d48955ee4c19978fcf schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Applied Mathematics
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Numerical and Computational Mathematics
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Engineering
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mechanical Engineering
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1041781 schema:issn 0022-0833
    91 1573-2703
    92 schema:name Journal of Engineering Mathematics
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.010164432133.40 schema:affiliation grid-institutes:None
    96 schema:familyName Szücs
    97 schema:givenName Mátyás
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164432133.40
    99 rdf:type schema:Person
    100 sg:person.011174613407.91 schema:affiliation grid-institutes:None
    101 schema:familyName Fülöp
    102 schema:givenName Tamás
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011174613407.91
    104 rdf:type schema:Person
    105 sg:pub.10.1007/bf00253942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017932458
    106 https://doi.org/10.1007/bf00253942
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00161-014-0392-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047915646
    109 https://doi.org/10.1007/s00161-014-0392-3
    110 rdf:type schema:CreativeWork
    111 grid-institutes:None schema:alternateName Montavid Research Group, 6 Táncos st., 1112, Budapest, Hungary
    112 schema:name Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
    113 Montavid Research Group, 6 Táncos st., 1112, Budapest, Hungary
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...