Extraction of density-layered fluid from a porous medium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-28

AUTHORS

J. Jose, G. C. Hocking, D. E. Farrow

ABSTRACT

We consider axisymmetric flow towards a point sink from a stratified fluid in a vertically confined aquifer. We present two approaches to solve the equations of flow for the linear density gradient case. Firstly, a series method results in an eigenfunction expansion in Whittaker functions. The second method is a finite difference method. Comparison of the two methods verifies the finite difference method is accurate, so that more complicated nonlinear, density stratification can be considered. Interesting results for the case where the density stratification changes from linear to almost two-layer are presented, showing that in the nonlinear stratification case, there are certain values of flow rate for which a steady solution does not occur. A spectral method is then implemented to consider cases in which there is a stagnant region beneath a sharp interface between two layers of different, but constant, density. In this situation, flows also exist only for flow rates beneath a critical flux value, consistent with the results for the continuous density stratification. More... »

PAGES

3

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10665-022-10229-4

DOI

http://dx.doi.org/10.1007/s10665-022-10229-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149026991


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics and Statistics, Murdoch University, Perth, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1025.6", 
          "name": [
            "Mathematics and Statistics, Murdoch University, Perth, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jose", 
        "givenName": "J.", 
        "id": "sg:person.014103001723.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103001723.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics and Statistics, Murdoch University, 6150, Murdoch, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1025.6", 
          "name": [
            "Mathematics and Statistics, Murdoch University, 6150, Murdoch, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hocking", 
        "givenName": "G. C.", 
        "id": "sg:person.015440632101.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440632101.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics and Statistics, Murdoch University, 6150, Murdoch, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1025.6", 
          "name": [
            "Mathematics and Statistics, Murdoch University, 6150, Murdoch, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farrow", 
        "givenName": "D. E.", 
        "id": "sg:person.012421710425.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012421710425.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1004227232732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023292584", 
          "https://doi.org/10.1023/a:1004227232732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10665-009-9267-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035999937", 
          "https://doi.org/10.1007/s10665-009-9267-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-28", 
    "datePublishedReg": "2022-06-28", 
    "description": "We consider axisymmetric flow towards a point sink from a stratified fluid in a vertically confined aquifer. We present two approaches to solve the equations of flow for the linear density gradient case. Firstly, a series method results in an eigenfunction expansion in Whittaker functions. The second method is a finite difference method. Comparison of the two methods verifies the finite difference method is accurate, so that more complicated nonlinear, density stratification can be considered. Interesting results for the case where the density stratification changes from linear to almost two-layer are presented, showing that in the nonlinear stratification case, there are certain values of flow rate for which a steady solution does not occur. A spectral method is then implemented to consider cases in which there is a stagnant region beneath a sharp interface between two layers of different, but constant, density. In this situation, flows also exist only for flow rates beneath a critical flux value, consistent with the results for the continuous density stratification.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10665-022-10229-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041781", 
        "issn": [
          "0022-0833", 
          "1573-2703"
        ], 
        "name": "Journal of Engineering Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "keywords": [
      "finite difference method", 
      "density stratification", 
      "flow rate", 
      "critical flux values", 
      "difference method", 
      "continuous density stratification", 
      "equations of flow", 
      "stratified fluid", 
      "stagnant regions", 
      "porous media", 
      "gradient case", 
      "sharp interface", 
      "two-layer", 
      "steady solutions", 
      "point sink", 
      "flux values", 
      "Whittaker functions", 
      "eigenfunction expansion", 
      "spectral method", 
      "series method", 
      "certain value", 
      "second method", 
      "stratification changes", 
      "interesting results", 
      "axisymmetric", 
      "fluid", 
      "equations", 
      "method", 
      "layer", 
      "interface", 
      "flow", 
      "aquifer", 
      "density", 
      "sink", 
      "solution", 
      "extraction", 
      "results", 
      "values", 
      "cases", 
      "rate", 
      "function", 
      "comparison", 
      "stratification", 
      "expansion", 
      "approach", 
      "medium", 
      "region", 
      "situation", 
      "changes"
    ], 
    "name": "Extraction of density-layered fluid from a porous medium", 
    "pagination": "3", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149026991"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10665-022-10229-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10665-022-10229-4", 
      "https://app.dimensions.ai/details/publication/pub.1149026991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_955.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10665-022-10229-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10229-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10229-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10229-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10229-4'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      75 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10665-022-10229-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nbff478a1093a4f27ab0d77c88b3a569c
4 schema:citation sg:pub.10.1007/s10665-009-9267-1
5 sg:pub.10.1023/a:1004227232732
6 schema:datePublished 2022-06-28
7 schema:datePublishedReg 2022-06-28
8 schema:description We consider axisymmetric flow towards a point sink from a stratified fluid in a vertically confined aquifer. We present two approaches to solve the equations of flow for the linear density gradient case. Firstly, a series method results in an eigenfunction expansion in Whittaker functions. The second method is a finite difference method. Comparison of the two methods verifies the finite difference method is accurate, so that more complicated nonlinear, density stratification can be considered. Interesting results for the case where the density stratification changes from linear to almost two-layer are presented, showing that in the nonlinear stratification case, there are certain values of flow rate for which a steady solution does not occur. A spectral method is then implemented to consider cases in which there is a stagnant region beneath a sharp interface between two layers of different, but constant, density. In this situation, flows also exist only for flow rates beneath a critical flux value, consistent with the results for the continuous density stratification.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N755770889d014899b31137eb47b7ce47
12 Na87a97cc2f6c4b50aa18ffce62beb94d
13 sg:journal.1041781
14 schema:keywords Whittaker functions
15 approach
16 aquifer
17 axisymmetric
18 cases
19 certain value
20 changes
21 comparison
22 continuous density stratification
23 critical flux values
24 density
25 density stratification
26 difference method
27 eigenfunction expansion
28 equations
29 equations of flow
30 expansion
31 extraction
32 finite difference method
33 flow
34 flow rate
35 fluid
36 flux values
37 function
38 gradient case
39 interesting results
40 interface
41 layer
42 medium
43 method
44 point sink
45 porous media
46 rate
47 region
48 results
49 second method
50 series method
51 sharp interface
52 sink
53 situation
54 solution
55 spectral method
56 stagnant regions
57 steady solutions
58 stratification
59 stratification changes
60 stratified fluid
61 two-layer
62 values
63 schema:name Extraction of density-layered fluid from a porous medium
64 schema:pagination 3
65 schema:productId N6ff04df8a9a74187944d32fb9164cbf4
66 N8ac85b8e2785498fae640303930f516f
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149026991
68 https://doi.org/10.1007/s10665-022-10229-4
69 schema:sdDatePublished 2022-12-01T06:44
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nbda2adf75a244fc29b0706b1c323b6da
72 schema:url https://doi.org/10.1007/s10665-022-10229-4
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N343d06d4c88341bf859cc60f6e391b98 rdf:first sg:person.015440632101.78
77 rdf:rest N836b9bf639004a99b0ecc18bad1fe3a0
78 N6ff04df8a9a74187944d32fb9164cbf4 schema:name dimensions_id
79 schema:value pub.1149026991
80 rdf:type schema:PropertyValue
81 N755770889d014899b31137eb47b7ce47 schema:volumeNumber 135
82 rdf:type schema:PublicationVolume
83 N836b9bf639004a99b0ecc18bad1fe3a0 rdf:first sg:person.012421710425.97
84 rdf:rest rdf:nil
85 N8ac85b8e2785498fae640303930f516f schema:name doi
86 schema:value 10.1007/s10665-022-10229-4
87 rdf:type schema:PropertyValue
88 Na87a97cc2f6c4b50aa18ffce62beb94d schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Nbda2adf75a244fc29b0706b1c323b6da schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nbff478a1093a4f27ab0d77c88b3a569c rdf:first sg:person.014103001723.60
93 rdf:rest N343d06d4c88341bf859cc60f6e391b98
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
98 schema:name Interdisciplinary Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1041781 schema:issn 0022-0833
101 1573-2703
102 schema:name Journal of Engineering Mathematics
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.012421710425.97 schema:affiliation grid-institutes:grid.1025.6
106 schema:familyName Farrow
107 schema:givenName D. E.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012421710425.97
109 rdf:type schema:Person
110 sg:person.014103001723.60 schema:affiliation grid-institutes:grid.1025.6
111 schema:familyName Jose
112 schema:givenName J.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103001723.60
114 rdf:type schema:Person
115 sg:person.015440632101.78 schema:affiliation grid-institutes:grid.1025.6
116 schema:familyName Hocking
117 schema:givenName G. C.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440632101.78
119 rdf:type schema:Person
120 sg:pub.10.1007/s10665-009-9267-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035999937
121 https://doi.org/10.1007/s10665-009-9267-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1004227232732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023292584
124 https://doi.org/10.1023/a:1004227232732
125 rdf:type schema:CreativeWork
126 grid-institutes:grid.1025.6 schema:alternateName Mathematics and Statistics, Murdoch University, 6150, Murdoch, WA, Australia
127 Mathematics and Statistics, Murdoch University, Perth, Australia
128 schema:name Mathematics and Statistics, Murdoch University, 6150, Murdoch, WA, Australia
129 Mathematics and Statistics, Murdoch University, Perth, Australia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...