Wave diffraction from the PEC finite wedge View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-26

AUTHORS

Dozyslav B. Kuryliak

ABSTRACT

The aim of this paper is to discuss the problem of wave diffraction from the finite wedge on a rigorous level using the method of analytical regularization. We apply the Kontorovich–Lebedev integrals that are considered in principal value sense and the eigenfunctions series for this purpose. The problem is reduced to a couple of the independent infinite systems of linear algebraic equations (ISLAE) of the first kind. The convolution type operators are singled out from them and the inverse operators are represented in analytical form. These two couples of operators are called the regularizing operators. They are used to reduce the initial ISLAE of the first kind to the ISLAE of the second kind. The numerical examples of wave scattering from the wedge are analysed. More... »

PAGES

5

References to SciGraph publications

  • 2019-02-19. Diffraction by semi-infinite cone formed with electric and magnetic surfaces: analytical regularization and Wiener–Hopf techniques in JOURNAL OF ENGINEERING MATHEMATICS
  • 1987. Theorie der Beugung in KRISTALLOPTIK · BEUGUNG / CRYSTAL OPTICS · DIFFRACTION
  • 2021-06-25. Wave diffraction from the finite bicone in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 2009-07. Symmetric electromagnetic excitation of a finite conducting cone with azimuthal slot in RADIOELECTRONICS AND COMMUNICATIONS SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10665-022-10222-x

    DOI

    http://dx.doi.org/10.1007/s10665-022-10222-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148189915


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lviv Polytechnic National University, Lviv, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.10067.30", 
              "name": [
                "Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine", 
                "Lviv Polytechnic National University, Lviv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuryliak", 
            "givenName": "Dozyslav B.", 
            "id": "sg:person.011331662647.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331662647.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00033-021-01577-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139150390", 
              "https://doi.org/10.1007/s00033-021-01577-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s0735272709070097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010998752", 
              "https://doi.org/10.3103/s0735272709070097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10665-019-09991-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112222345", 
              "https://doi.org/10.1007/s10665-019-09991-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-45959-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015919825", 
              "https://doi.org/10.1007/978-3-642-45959-7_2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-26", 
        "datePublishedReg": "2022-05-26", 
        "description": "The aim of this paper is to discuss the problem of wave diffraction from the finite wedge on a rigorous level using the method of analytical regularization. We apply the Kontorovich\u2013Lebedev integrals that are considered in principal value sense and the eigenfunctions series for this purpose. The problem is reduced to a couple of the independent infinite systems of linear algebraic equations (ISLAE) of the first kind. The convolution type operators are singled out from them and the inverse operators are represented in analytical form. These two couples of operators are called the regularizing operators. They are used to reduce the initial ISLAE of the first kind to the ISLAE of the second kind. The numerical examples of wave scattering from the wedge are analysed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10665-022-10222-x", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041781", 
            "issn": [
              "0022-0833", 
              "1573-2703"
            ], 
            "name": "Journal of Engineering Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "134"
          }
        ], 
        "keywords": [
          "couple of operators", 
          "first kind", 
          "linear algebraic equations", 
          "convolution type operators", 
          "algebraic equations", 
          "Kontorovich-Lebedev integral", 
          "principal value sense", 
          "infinite system", 
          "inverse operator", 
          "analytical regularization", 
          "finite wedge", 
          "numerical examples", 
          "type operators", 
          "wave diffraction", 
          "analytical form", 
          "second kind", 
          "ISLAE", 
          "eigenfunction series", 
          "value sense", 
          "operators", 
          "rigorous level", 
          "equations", 
          "problem", 
          "integrals", 
          "regularization", 
          "waves", 
          "kind", 
          "wedge", 
          "diffraction", 
          "sense", 
          "system", 
          "form", 
          "series", 
          "couples", 
          "purpose", 
          "aim", 
          "levels", 
          "example", 
          "paper", 
          "method"
        ], 
        "name": "Wave diffraction from the PEC finite wedge", 
        "pagination": "5", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148189915"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10665-022-10222-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10665-022-10222-x", 
          "https://app.dimensions.ai/details/publication/pub.1148189915"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_951.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10665-022-10222-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10222-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10222-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10222-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10222-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      21 PREDICATES      68 URIs      56 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10665-022-10222-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9af1dd584cd14f67985ce46fe045fb28
    4 schema:citation sg:pub.10.1007/978-3-642-45959-7_2
    5 sg:pub.10.1007/s00033-021-01577-9
    6 sg:pub.10.1007/s10665-019-09991-9
    7 sg:pub.10.3103/s0735272709070097
    8 schema:datePublished 2022-05-26
    9 schema:datePublishedReg 2022-05-26
    10 schema:description The aim of this paper is to discuss the problem of wave diffraction from the finite wedge on a rigorous level using the method of analytical regularization. We apply the Kontorovich–Lebedev integrals that are considered in principal value sense and the eigenfunctions series for this purpose. The problem is reduced to a couple of the independent infinite systems of linear algebraic equations (ISLAE) of the first kind. The convolution type operators are singled out from them and the inverse operators are represented in analytical form. These two couples of operators are called the regularizing operators. They are used to reduce the initial ISLAE of the first kind to the ISLAE of the second kind. The numerical examples of wave scattering from the wedge are analysed.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N3c2652d6da534411b3e736d3236fc8e3
    14 N4b723b7d775d43cf8c5f295105825df4
    15 sg:journal.1041781
    16 schema:keywords ISLAE
    17 Kontorovich-Lebedev integral
    18 aim
    19 algebraic equations
    20 analytical form
    21 analytical regularization
    22 convolution type operators
    23 couple of operators
    24 couples
    25 diffraction
    26 eigenfunction series
    27 equations
    28 example
    29 finite wedge
    30 first kind
    31 form
    32 infinite system
    33 integrals
    34 inverse operator
    35 kind
    36 levels
    37 linear algebraic equations
    38 method
    39 numerical examples
    40 operators
    41 paper
    42 principal value sense
    43 problem
    44 purpose
    45 regularization
    46 rigorous level
    47 second kind
    48 sense
    49 series
    50 system
    51 type operators
    52 value sense
    53 wave diffraction
    54 waves
    55 wedge
    56 schema:name Wave diffraction from the PEC finite wedge
    57 schema:pagination 5
    58 schema:productId N6155ae1ec17849aaa60b24b794717065
    59 Na8de1fa24cd8495199053f71cf2d98d7
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148189915
    61 https://doi.org/10.1007/s10665-022-10222-x
    62 schema:sdDatePublished 2022-11-24T21:08
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N19bbb0ae5d8540ddabff077b008d004b
    65 schema:url https://doi.org/10.1007/s10665-022-10222-x
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N19bbb0ae5d8540ddabff077b008d004b schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N3c2652d6da534411b3e736d3236fc8e3 schema:issueNumber 1
    72 rdf:type schema:PublicationIssue
    73 N4b723b7d775d43cf8c5f295105825df4 schema:volumeNumber 134
    74 rdf:type schema:PublicationVolume
    75 N6155ae1ec17849aaa60b24b794717065 schema:name dimensions_id
    76 schema:value pub.1148189915
    77 rdf:type schema:PropertyValue
    78 N9af1dd584cd14f67985ce46fe045fb28 rdf:first sg:person.011331662647.69
    79 rdf:rest rdf:nil
    80 Na8de1fa24cd8495199053f71cf2d98d7 schema:name doi
    81 schema:value 10.1007/s10665-022-10222-x
    82 rdf:type schema:PropertyValue
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Pure Mathematics
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1041781 schema:issn 0022-0833
    90 1573-2703
    91 schema:name Journal of Engineering Mathematics
    92 schema:publisher Springer Nature
    93 rdf:type schema:Periodical
    94 sg:person.011331662647.69 schema:affiliation grid-institutes:grid.10067.30
    95 schema:familyName Kuryliak
    96 schema:givenName Dozyslav B.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331662647.69
    98 rdf:type schema:Person
    99 sg:pub.10.1007/978-3-642-45959-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015919825
    100 https://doi.org/10.1007/978-3-642-45959-7_2
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00033-021-01577-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139150390
    103 https://doi.org/10.1007/s00033-021-01577-9
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s10665-019-09991-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112222345
    106 https://doi.org/10.1007/s10665-019-09991-9
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.3103/s0735272709070097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010998752
    109 https://doi.org/10.3103/s0735272709070097
    110 rdf:type schema:CreativeWork
    111 grid-institutes:grid.10067.30 schema:alternateName Lviv Polytechnic National University, Lviv, Ukraine
    112 schema:name Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine
    113 Lviv Polytechnic National University, Lviv, Ukraine
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...