Dynamic and static stability of a drop attached to an inhomogeneous plane wall View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-28

AUTHORS

Julian F. Scott

ABSTRACT

This article concerns the stability of a drop on a wall for which the contact angle, θw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _\mathrm{{{w}}}$$\end{document}, varies from place to place. Such a wall may allow unstable equilibria of the drop, i.e. ones for which small perturbations to equilibrium grow, making the equilibrium unrealisable in practice. This will be referred to as dynamic instability and is one of the two versions of instability considered. The other arises from consideration of potential energy, which is the sum of surface (liquid/gas, liquid/solid and solid/gas) components and the gravitational potential energy. Equilibria are extrema of the potential energy with respect to variations of drop geometry which preserve its volume. An equilibrium is said to be statically stable if it is a local minimum of the potential energy for volume-preserving perturbations of the drop. The relationship between static and dynamic stability is the main subject of this paper. The liquid flow is governed by the incompressible Navier–Stokes equations. To allow for the moving contact line, a Navier slip condition with slip length λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is used at the wall, as is a prescribed contact angle, θw=θw(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _\mathrm{{{w}}} =\theta _\mathrm{{{w}}} ({x,y})$$\end{document}, at the contact line, where x, y are Cartesian coordinates on the wall. The perturbation is assumed small, allowing linearisation of the governing equations and, in the usual manner of stability analysis, complex modes having the time dependency est\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^\mathrm{{{st}}}$$\end{document} are introduced. This leads to an eigenvalue problem with eigenvalue s, the sign of whose real part determines dynamic stability/instability. A quite different eigenvalue problem, which describes static stability/instability is also derived. It is shown that, despite this difference, the conditions for dynamic and static instability are in fact the same. This conclusion is far from evident a priori but should be good news for interested numerical analysts because determination of static stability is much less numerically costly than a dynamic stability study, whereas it is the latter which gives a true determination of stability. More... »

PAGES

4

References to SciGraph publications

  • 2014-01-12. Numerical Simulation of Sliding Drops on an Inclined Solid Surface in COMPUTATIONAL AND EXPERIMENTAL FLUID MECHANICS WITH APPLICATIONS TO PHYSICS, ENGINEERING AND THE ENVIRONMENT
  • 1986. Equilibrium Capillary Surfaces in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10665-022-10220-z

    DOI

    http://dx.doi.org/10.1007/s10665-022-10220-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149026990


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de M\u00e9canique des Fluides et d\u2019Acoustique (LMFA), Universit\u00e9 de Lyon, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.25697.3f", 
              "name": [
                "Laboratoire de M\u00e9canique des Fluides et d\u2019Acoustique (LMFA), Universit\u00e9 de Lyon, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scott", 
            "givenName": "Julian F.", 
            "id": "sg:person.011043326112.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043326112.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-00191-3_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013028396", 
              "https://doi.org/10.1007/978-3-319-00191-3_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8584-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028907946", 
              "https://doi.org/10.1007/978-1-4613-8584-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-28", 
        "datePublishedReg": "2022-06-28", 
        "description": "This article concerns the stability of a drop on a wall for which the contact angle, \u03b8w\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta _\\mathrm{{{w}}}$$\\end{document}, varies from place to place. Such a wall may allow unstable equilibria of the drop, i.e. ones for which small perturbations to equilibrium grow, making the equilibrium unrealisable in practice. This will be referred to as dynamic instability and is one of the two versions of instability considered. The other arises from consideration of potential energy, which is the sum of surface (liquid/gas, liquid/solid and solid/gas) components and the gravitational potential energy. Equilibria are extrema of the potential energy with respect to variations of drop geometry which preserve its volume. An equilibrium is said to be statically stable if it is a local minimum of the potential energy for volume-preserving perturbations of the drop. The relationship between static and dynamic stability is the main subject of this paper. The liquid flow is governed by the incompressible Navier\u2013Stokes equations. To allow for the moving contact line, a Navier slip condition with slip length \u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda $$\\end{document} is used at the wall, as is a prescribed contact angle, \u03b8w=\u03b8w(x,y)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta _\\mathrm{{{w}}} =\\theta _\\mathrm{{{w}}} ({x,y})$$\\end{document}, at the contact line, where x, y are Cartesian coordinates on the wall. The perturbation is assumed small, allowing linearisation of the governing equations and, in the usual manner of stability analysis, complex modes having the time dependency est\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$e^\\mathrm{{{st}}}$$\\end{document} are introduced. This leads to an eigenvalue problem with eigenvalue s, the sign of whose real part determines dynamic stability/instability. A quite different eigenvalue problem, which describes static stability/instability is also derived. It is shown that, despite this difference, the conditions for dynamic and static instability are in fact the same. This conclusion is far from evident a priori but should be good news for interested numerical analysts because determination of static stability is much less numerically costly than a dynamic stability study, whereas it is the latter which gives a true determination of stability.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10665-022-10220-z", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4730906", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041781", 
            "issn": [
              "0022-0833", 
              "1573-2703"
            ], 
            "name": "Journal of Engineering Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "135"
          }
        ], 
        "keywords": [
          "contact angle", 
          "contact line", 
          "static stability", 
          "Navier slip condition", 
          "potential energy", 
          "Navier-Stokes equations", 
          "dynamic stability studies", 
          "incompressible Navier\u2013Stokes equations", 
          "liquid flow", 
          "slip condition", 
          "slip length", 
          "plane wall", 
          "drop geometry", 
          "prescribed contact angle", 
          "static instability", 
          "dynamic stability", 
          "gravitational potential energy", 
          "stability analysis", 
          "stability/instability", 
          "dynamic instability", 
          "eigenvalue problem", 
          "drop", 
          "stability", 
          "different eigenvalue problems", 
          "energy", 
          "Cartesian coordinates", 
          "wall", 
          "stability studies", 
          "time dependency", 
          "eigenvalue s", 
          "instability", 
          "real part", 
          "angle", 
          "complex modes", 
          "equations", 
          "linearisation", 
          "small perturbations", 
          "flow", 
          "conditions", 
          "numerical analysts", 
          "geometry", 
          "equilibrium", 
          "mode", 
          "unstable equilibrium", 
          "perturbations", 
          "local minima", 
          "main subject", 
          "coordinates", 
          "problem", 
          "true determination", 
          "\u03b8w", 
          "determination", 
          "extrema", 
          "usual manner", 
          "surface components", 
          "dependency", 
          "components", 
          "volume", 
          "variation", 
          "consideration", 
          "length", 
          "respect", 
          "lines", 
          "minimum", 
          "one", 
          "place", 
          "analysis", 
          "part", 
          "sum", 
          "study", 
          "manner", 
          "fact", 
          "version", 
          "article", 
          "differences", 
          "relationship", 
          "analysts", 
          "conclusion", 
          "practice", 
          "signs", 
          "news", 
          "subjects", 
          "good news", 
          "paper"
        ], 
        "name": "Dynamic and static stability of a drop attached to an inhomogeneous plane wall", 
        "pagination": "4", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149026990"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10665-022-10220-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10665-022-10220-z", 
          "https://app.dimensions.ai/details/publication/pub.1149026990"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_949.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10665-022-10220-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10220-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10220-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10220-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10220-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    151 TRIPLES      21 PREDICATES      109 URIs      99 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10665-022-10220-z schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N0e8b2e7fdf4c415ca65ddd91809a3fc5
    4 schema:citation sg:pub.10.1007/978-1-4613-8584-4
    5 sg:pub.10.1007/978-3-319-00191-3_3
    6 schema:datePublished 2022-06-28
    7 schema:datePublishedReg 2022-06-28
    8 schema:description This article concerns the stability of a drop on a wall for which the contact angle, θw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _\mathrm{{{w}}}$$\end{document}, varies from place to place. Such a wall may allow unstable equilibria of the drop, i.e. ones for which small perturbations to equilibrium grow, making the equilibrium unrealisable in practice. This will be referred to as dynamic instability and is one of the two versions of instability considered. The other arises from consideration of potential energy, which is the sum of surface (liquid/gas, liquid/solid and solid/gas) components and the gravitational potential energy. Equilibria are extrema of the potential energy with respect to variations of drop geometry which preserve its volume. An equilibrium is said to be statically stable if it is a local minimum of the potential energy for volume-preserving perturbations of the drop. The relationship between static and dynamic stability is the main subject of this paper. The liquid flow is governed by the incompressible Navier–Stokes equations. To allow for the moving contact line, a Navier slip condition with slip length λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is used at the wall, as is a prescribed contact angle, θw=θw(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _\mathrm{{{w}}} =\theta _\mathrm{{{w}}} ({x,y})$$\end{document}, at the contact line, where x, y are Cartesian coordinates on the wall. The perturbation is assumed small, allowing linearisation of the governing equations and, in the usual manner of stability analysis, complex modes having the time dependency est\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^\mathrm{{{st}}}$$\end{document} are introduced. This leads to an eigenvalue problem with eigenvalue s, the sign of whose real part determines dynamic stability/instability. A quite different eigenvalue problem, which describes static stability/instability is also derived. It is shown that, despite this difference, the conditions for dynamic and static instability are in fact the same. This conclusion is far from evident a priori but should be good news for interested numerical analysts because determination of static stability is much less numerically costly than a dynamic stability study, whereas it is the latter which gives a true determination of stability.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N1d55a152bdf9474fb94a5861c037c1e7
    12 Nbf5b0b2defda4ec0a0d22dfa0021e1ef
    13 sg:journal.1041781
    14 schema:keywords Cartesian coordinates
    15 Navier slip condition
    16 Navier-Stokes equations
    17 analysis
    18 analysts
    19 angle
    20 article
    21 complex modes
    22 components
    23 conclusion
    24 conditions
    25 consideration
    26 contact angle
    27 contact line
    28 coordinates
    29 dependency
    30 determination
    31 differences
    32 different eigenvalue problems
    33 drop
    34 drop geometry
    35 dynamic instability
    36 dynamic stability
    37 dynamic stability studies
    38 eigenvalue problem
    39 eigenvalue s
    40 energy
    41 equations
    42 equilibrium
    43 extrema
    44 fact
    45 flow
    46 geometry
    47 good news
    48 gravitational potential energy
    49 incompressible Navier–Stokes equations
    50 instability
    51 length
    52 linearisation
    53 lines
    54 liquid flow
    55 local minima
    56 main subject
    57 manner
    58 minimum
    59 mode
    60 news
    61 numerical analysts
    62 one
    63 paper
    64 part
    65 perturbations
    66 place
    67 plane wall
    68 potential energy
    69 practice
    70 prescribed contact angle
    71 problem
    72 real part
    73 relationship
    74 respect
    75 signs
    76 slip condition
    77 slip length
    78 small perturbations
    79 stability
    80 stability analysis
    81 stability studies
    82 stability/instability
    83 static instability
    84 static stability
    85 study
    86 subjects
    87 sum
    88 surface components
    89 time dependency
    90 true determination
    91 unstable equilibrium
    92 usual manner
    93 variation
    94 version
    95 volume
    96 wall
    97 θw
    98 schema:name Dynamic and static stability of a drop attached to an inhomogeneous plane wall
    99 schema:pagination 4
    100 schema:productId N1d8a175e221342f2855debe0ec401c73
    101 N3e3c4eac30d649ebae5496352c281a4b
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149026990
    103 https://doi.org/10.1007/s10665-022-10220-z
    104 schema:sdDatePublished 2022-12-01T06:44
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N29d3efb0522a4256bd8fc4e86300c33c
    107 schema:url https://doi.org/10.1007/s10665-022-10220-z
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N0e8b2e7fdf4c415ca65ddd91809a3fc5 rdf:first sg:person.011043326112.78
    112 rdf:rest rdf:nil
    113 N1d55a152bdf9474fb94a5861c037c1e7 schema:issueNumber 1
    114 rdf:type schema:PublicationIssue
    115 N1d8a175e221342f2855debe0ec401c73 schema:name doi
    116 schema:value 10.1007/s10665-022-10220-z
    117 rdf:type schema:PropertyValue
    118 N29d3efb0522a4256bd8fc4e86300c33c schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 N3e3c4eac30d649ebae5496352c281a4b schema:name dimensions_id
    121 schema:value pub.1149026990
    122 rdf:type schema:PropertyValue
    123 Nbf5b0b2defda4ec0a0d22dfa0021e1ef schema:volumeNumber 135
    124 rdf:type schema:PublicationVolume
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Chemical Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:grant.4730906 http://pending.schema.org/fundedItem sg:pub.10.1007/s10665-022-10220-z
    132 rdf:type schema:MonetaryGrant
    133 sg:journal.1041781 schema:issn 0022-0833
    134 1573-2703
    135 schema:name Journal of Engineering Mathematics
    136 schema:publisher Springer Nature
    137 rdf:type schema:Periodical
    138 sg:person.011043326112.78 schema:affiliation grid-institutes:grid.25697.3f
    139 schema:familyName Scott
    140 schema:givenName Julian F.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043326112.78
    142 rdf:type schema:Person
    143 sg:pub.10.1007/978-1-4613-8584-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028907946
    144 https://doi.org/10.1007/978-1-4613-8584-4
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-319-00191-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028396
    147 https://doi.org/10.1007/978-3-319-00191-3_3
    148 rdf:type schema:CreativeWork
    149 grid-institutes:grid.25697.3f schema:alternateName Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), Université de Lyon, Lyon, France
    150 schema:name Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), Université de Lyon, Lyon, France
    151 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...