On the lifetimes of two-dimensional droplets on smooth wetting patterns View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-28

AUTHORS

Matthew Haynes, Marc Pradas

ABSTRACT

We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /2$$\end{document} and with ε≲0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \lesssim 0.1$$\end{document}. More... »

PAGES

2

References to SciGraph publications

  • 2011-09-21. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity in NATURE
  • 2018-04-11. Snap evaporation of droplets on smooth topographies in NATURE COMMUNICATIONS
  • 2020-02-05. The shielding effect extends the lifetimes of two-dimensional sessile droplets in JOURNAL OF ENGINEERING MATHEMATICS
  • 2018-03-19. Drying drops in THE EUROPEAN PHYSICAL JOURNAL E
  • 2020-09-21. Bidirectional motion of droplets on gradient liquid infused surfaces in COMMUNICATIONS PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10665-022-10218-7

    DOI

    http://dx.doi.org/10.1007/s10665-022-10218-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149026989


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematics and Statistics, The Open University, MK7 6AA, Milton Keynes, UK", 
              "id": "http://www.grid.ac/institutes/grid.10837.3d", 
              "name": [
                "School of Mathematics and Statistics, The Open University, MK7 6AA, Milton Keynes, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haynes", 
            "givenName": "Matthew", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics and Statistics, The Open University, MK7 6AA, Milton Keynes, UK", 
              "id": "http://www.grid.ac/institutes/grid.10837.3d", 
              "name": [
                "School of Mathematics and Statistics, The Open University, MK7 6AA, Milton Keynes, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pradas", 
            "givenName": "Marc", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10665-019-10033-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124622716", 
              "https://doi.org/10.1007/s10665-019-10033-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03840-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103220879", 
              "https://doi.org/10.1038/s41467-018-03840-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epje/i2018-11639-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101548716", 
              "https://doi.org/10.1140/epje/i2018-11639-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42005-020-00429-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131004378", 
              "https://doi.org/10.1038/s42005-020-00429-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040378279", 
              "https://doi.org/10.1038/nature10447"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-28", 
        "datePublishedReg": "2022-06-28", 
        "description": "We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet\u2019s lifetime depends on the averaged contact angle and strength \u03b5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon $$\\end{document} of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle \u03c0/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\pi /2$$\\end{document} and with \u03b5\u22720.1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon \\lesssim 0.1$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10665-022-10218-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7444231", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041781", 
            "issn": [
              "0022-0833", 
              "1573-2703"
            ], 
            "name": "Journal of Engineering Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "135"
          }
        ], 
        "keywords": [
          "patterns", 
          "chemical patterns", 
          "evolution", 
          "droplets", 
          "conditions", 
          "rate", 
          "size", 
          "stability", 
          "shape", 
          "hydrophilic conditions", 
          "time", 
          "lifetime", 
          "model", 
          "contact angle", 
          "evaporation rate", 
          "wetting pattern", 
          "average contact angle", 
          "volume", 
          "neutral wetting", 
          "cases", 
          "strength", 
          "two-dimensional droplet", 
          "wetting", 
          "droplet lifetime", 
          "angle", 
          "lifetime of droplets", 
          "static stability", 
          "equations", 
          "boundary conditions", 
          "far-field boundary conditions", 
          "exact equations", 
          "infinity"
        ], 
        "name": "On the lifetimes of two-dimensional droplets on smooth wetting patterns", 
        "pagination": "2", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149026989"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10665-022-10218-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10665-022-10218-7", 
          "https://app.dimensions.ai/details/publication/pub.1149026989"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_923.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10665-022-10218-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10218-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10218-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10218-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-022-10218-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      64 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10665-022-10218-7 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0103
    4 anzsrc-for:09
    5 anzsrc-for:0913
    6 schema:author N4e62da585ca14539a82fd4dc327c5432
    7 schema:citation sg:pub.10.1007/s10665-019-10033-7
    8 sg:pub.10.1038/nature10447
    9 sg:pub.10.1038/s41467-018-03840-6
    10 sg:pub.10.1038/s42005-020-00429-8
    11 sg:pub.10.1140/epje/i2018-11639-2
    12 schema:datePublished 2022-06-28
    13 schema:datePublishedReg 2022-06-28
    14 schema:description We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /2$$\end{document} and with ε≲0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \lesssim 0.1$$\end{document}.
    15 schema:genre article
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N49ad4a4575a74ec58bab8d7b9ce83eef
    18 N98d9acdb64e64fd3986338b70eb400fb
    19 sg:journal.1041781
    20 schema:keywords angle
    21 average contact angle
    22 boundary conditions
    23 cases
    24 chemical patterns
    25 conditions
    26 contact angle
    27 droplet lifetime
    28 droplets
    29 equations
    30 evaporation rate
    31 evolution
    32 exact equations
    33 far-field boundary conditions
    34 hydrophilic conditions
    35 infinity
    36 lifetime
    37 lifetime of droplets
    38 model
    39 neutral wetting
    40 patterns
    41 rate
    42 shape
    43 size
    44 stability
    45 static stability
    46 strength
    47 time
    48 two-dimensional droplet
    49 volume
    50 wetting
    51 wetting pattern
    52 schema:name On the lifetimes of two-dimensional droplets on smooth wetting patterns
    53 schema:pagination 2
    54 schema:productId N1b5d646e6d6043dea55e8ea6406eedcb
    55 Nc12d6cf593ff4725abe092c91b71964b
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149026989
    57 https://doi.org/10.1007/s10665-022-10218-7
    58 schema:sdDatePublished 2022-12-01T06:43
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N9ed77f39d4f2446da94b66fe1fc3a123
    61 schema:url https://doi.org/10.1007/s10665-022-10218-7
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N07a1f8a022b349959f78235ab0a6cdab rdf:first Nac804a85f0a34ed786e7bc3e6e6616ce
    66 rdf:rest rdf:nil
    67 N1b5d646e6d6043dea55e8ea6406eedcb schema:name dimensions_id
    68 schema:value pub.1149026989
    69 rdf:type schema:PropertyValue
    70 N49ad4a4575a74ec58bab8d7b9ce83eef schema:volumeNumber 135
    71 rdf:type schema:PublicationVolume
    72 N4e62da585ca14539a82fd4dc327c5432 rdf:first N676bd47fe7694ef78612b1561bcdeb9e
    73 rdf:rest N07a1f8a022b349959f78235ab0a6cdab
    74 N676bd47fe7694ef78612b1561bcdeb9e schema:affiliation grid-institutes:grid.10837.3d
    75 schema:familyName Haynes
    76 schema:givenName Matthew
    77 rdf:type schema:Person
    78 N98d9acdb64e64fd3986338b70eb400fb schema:issueNumber 1
    79 rdf:type schema:PublicationIssue
    80 N9ed77f39d4f2446da94b66fe1fc3a123 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Nac804a85f0a34ed786e7bc3e6e6616ce schema:affiliation grid-institutes:grid.10837.3d
    83 schema:familyName Pradas
    84 schema:givenName Marc
    85 rdf:type schema:Person
    86 Nc12d6cf593ff4725abe092c91b71964b schema:name doi
    87 schema:value 10.1007/s10665-022-10218-7
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Mathematical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Applied Mathematics
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Numerical and Computational Mathematics
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Engineering
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Mechanical Engineering
    103 rdf:type schema:DefinedTerm
    104 sg:grant.7444231 http://pending.schema.org/fundedItem sg:pub.10.1007/s10665-022-10218-7
    105 rdf:type schema:MonetaryGrant
    106 sg:journal.1041781 schema:issn 0022-0833
    107 1573-2703
    108 schema:name Journal of Engineering Mathematics
    109 schema:publisher Springer Nature
    110 rdf:type schema:Periodical
    111 sg:pub.10.1007/s10665-019-10033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124622716
    112 https://doi.org/10.1007/s10665-019-10033-7
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nature10447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040378279
    115 https://doi.org/10.1038/nature10447
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/s41467-018-03840-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103220879
    118 https://doi.org/10.1038/s41467-018-03840-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/s42005-020-00429-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131004378
    121 https://doi.org/10.1038/s42005-020-00429-8
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1140/epje/i2018-11639-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101548716
    124 https://doi.org/10.1140/epje/i2018-11639-2
    125 rdf:type schema:CreativeWork
    126 grid-institutes:grid.10837.3d schema:alternateName School of Mathematics and Statistics, The Open University, MK7 6AA, Milton Keynes, UK
    127 schema:name School of Mathematics and Statistics, The Open University, MK7 6AA, Milton Keynes, UK
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...