A new technique for solving pressure–rate deconvolution problem in pressure transient testing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Georgy G. Skorik, Vladimir V. Vasin, Fikri Kuchuk

ABSTRACT

The transient pressure–rate deconvolution problem is formulated in the form of a linear convolution Volterra equation of the first kind. In addition to its ill-posedness, the problem is characterized by multiscale behavior of the solution and discontinuous input data with possibly large measurement errors (noises). These do not allow us to apply standard algorithms for solving the Volterra equation. Therefore, in most cases, deconvolution algorithms may implicitly or explicitly include regularization and take into account a priori information. In general, the solution has to satisfy certain conditions, such as positivity, monotonicity, and/or convexity. However, as is well known, the solution of the deconvolution problem satisfies an infinite system of inequalities. In this paper, we construct two effective regularization algorithms (methods) to obtain smooth approximate solutions satisfying all a priori constraints for the deconvolution problem. The convergence properties of the methods are proven. Finally, the methods are applied to a few sets of pressure–rate data with large measurement errors, and the deconvolution results of the data are discussed. More... »

PAGES

189-200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10665-016-9854-x

DOI

http://dx.doi.org/10.1007/s10665-016-9854-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006136553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Institute of Mathematics and Mechanics, UB RAS, 620990, Yekaterinburg, Russia", 
            "Ural Federal University, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skorik", 
        "givenName": "Georgy G.", 
        "id": "sg:person.016623200607.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623200607.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Institute of Mathematics and Mechanics, UB RAS, 620990, Yekaterinburg, Russia", 
            "Ural Federal University, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasin", 
        "givenName": "Vladimir V.", 
        "id": "sg:person.014432657207.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014432657207.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Schlumberger (France)", 
          "id": "https://www.grid.ac/institutes/grid.410410.0", 
          "name": [
            "Schlumberger Ltd, 92142, Clamart Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuchuk", 
        "givenName": "Fikri", 
        "id": "sg:person.012732611415.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732611415.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/jiip.2009.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019241333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/am.2010.15051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040884017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110944822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048256969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/12777-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068949161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/77688-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068959595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/84290-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068960403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/897-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068961268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/949305-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962669"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The transient pressure\u2013rate deconvolution problem is formulated in the form of a linear convolution Volterra equation of the first kind. In addition to its ill-posedness, the problem is characterized by multiscale behavior of the solution and discontinuous input data with possibly large measurement errors (noises). These do not allow us to apply standard algorithms for solving the Volterra equation. Therefore, in most cases, deconvolution algorithms may implicitly or explicitly include regularization and take into account a priori information. In general, the solution has to satisfy certain conditions, such as positivity, monotonicity, and/or convexity. However, as is well known, the solution of the deconvolution problem satisfies an infinite system of inequalities. In this paper, we construct two effective regularization algorithms (methods) to obtain smooth approximate solutions satisfying all a priori constraints for the deconvolution problem. The convergence properties of the methods are proven. Finally, the methods are applied to a few sets of pressure\u2013rate data with large measurement errors, and the deconvolution results of the data are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10665-016-9854-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6750693", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041781", 
        "issn": [
          "0022-0833", 
          "1573-2703"
        ], 
        "name": "Journal of Engineering Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "name": "A new technique for solving pressure\u2013rate deconvolution problem in pressure transient testing", 
    "pagination": "189-200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d3b3d7fd9590e78410e9d961f33482219429c5b8f21cffd82569696c90846ae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10665-016-9854-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006136553"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10665-016-9854-x", 
      "https://app.dimensions.ai/details/publication/pub.1006136553"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10665-016-9854-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-016-9854-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-016-9854-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-016-9854-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-016-9854-x'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10665-016-9854-x schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nc4c052d5384c4b408dc5bc2c3a8840c9
4 schema:citation https://doi.org/10.1515/9783110944822
5 https://doi.org/10.1515/jiip.2009.038
6 https://doi.org/10.2118/12777-pa
7 https://doi.org/10.2118/77688-pa
8 https://doi.org/10.2118/84290-pa
9 https://doi.org/10.2118/897-pa
10 https://doi.org/10.2118/949305-g
11 https://doi.org/10.4236/am.2010.15051
12 schema:datePublished 2016-12
13 schema:datePublishedReg 2016-12-01
14 schema:description The transient pressure–rate deconvolution problem is formulated in the form of a linear convolution Volterra equation of the first kind. In addition to its ill-posedness, the problem is characterized by multiscale behavior of the solution and discontinuous input data with possibly large measurement errors (noises). These do not allow us to apply standard algorithms for solving the Volterra equation. Therefore, in most cases, deconvolution algorithms may implicitly or explicitly include regularization and take into account a priori information. In general, the solution has to satisfy certain conditions, such as positivity, monotonicity, and/or convexity. However, as is well known, the solution of the deconvolution problem satisfies an infinite system of inequalities. In this paper, we construct two effective regularization algorithms (methods) to obtain smooth approximate solutions satisfying all a priori constraints for the deconvolution problem. The convergence properties of the methods are proven. Finally, the methods are applied to a few sets of pressure–rate data with large measurement errors, and the deconvolution results of the data are discussed.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8622d1312ada4000a2cd943f6f8f8e59
19 Nc38f0f1999e44ee0adf74512fa6e4c8d
20 sg:journal.1041781
21 schema:name A new technique for solving pressure–rate deconvolution problem in pressure transient testing
22 schema:pagination 189-200
23 schema:productId N086f3d6d022d4e1bbb42d8c7e6a56429
24 N0afabf50572445ad87910391d5f6038d
25 Na0355d18ab904341843680222c882c8d
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006136553
27 https://doi.org/10.1007/s10665-016-9854-x
28 schema:sdDatePublished 2019-04-10T13:15
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nc0ec3e366a32474d89860687b72dbea7
31 schema:url http://link.springer.com/10.1007%2Fs10665-016-9854-x
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N086f3d6d022d4e1bbb42d8c7e6a56429 schema:name readcube_id
36 schema:value 1d3b3d7fd9590e78410e9d961f33482219429c5b8f21cffd82569696c90846ae
37 rdf:type schema:PropertyValue
38 N0afabf50572445ad87910391d5f6038d schema:name doi
39 schema:value 10.1007/s10665-016-9854-x
40 rdf:type schema:PropertyValue
41 N6b067a629ccd46f6b863076de59a9a9c rdf:first sg:person.012732611415.29
42 rdf:rest rdf:nil
43 N8622d1312ada4000a2cd943f6f8f8e59 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N8e8c022126e84c16a114dcdbf13d7535 rdf:first sg:person.014432657207.60
46 rdf:rest N6b067a629ccd46f6b863076de59a9a9c
47 Na0355d18ab904341843680222c882c8d schema:name dimensions_id
48 schema:value pub.1006136553
49 rdf:type schema:PropertyValue
50 Nc0ec3e366a32474d89860687b72dbea7 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nc38f0f1999e44ee0adf74512fa6e4c8d schema:volumeNumber 101
53 rdf:type schema:PublicationVolume
54 Nc4c052d5384c4b408dc5bc2c3a8840c9 rdf:first sg:person.016623200607.67
55 rdf:rest N8e8c022126e84c16a114dcdbf13d7535
56 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
57 schema:name Information and Computing Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
60 schema:name Computation Theory and Mathematics
61 rdf:type schema:DefinedTerm
62 sg:grant.6750693 http://pending.schema.org/fundedItem sg:pub.10.1007/s10665-016-9854-x
63 rdf:type schema:MonetaryGrant
64 sg:journal.1041781 schema:issn 0022-0833
65 1573-2703
66 schema:name Journal of Engineering Mathematics
67 rdf:type schema:Periodical
68 sg:person.012732611415.29 schema:affiliation https://www.grid.ac/institutes/grid.410410.0
69 schema:familyName Kuchuk
70 schema:givenName Fikri
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732611415.29
72 rdf:type schema:Person
73 sg:person.014432657207.60 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
74 schema:familyName Vasin
75 schema:givenName Vladimir V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014432657207.60
77 rdf:type schema:Person
78 sg:person.016623200607.67 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
79 schema:familyName Skorik
80 schema:givenName Georgy G.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623200607.67
82 rdf:type schema:Person
83 https://doi.org/10.1515/9783110944822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256969
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1515/jiip.2009.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019241333
86 rdf:type schema:CreativeWork
87 https://doi.org/10.2118/12777-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068949161
88 rdf:type schema:CreativeWork
89 https://doi.org/10.2118/77688-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068959595
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2118/84290-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068960403
92 rdf:type schema:CreativeWork
93 https://doi.org/10.2118/897-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068961268
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2118/949305-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962669
96 rdf:type schema:CreativeWork
97 https://doi.org/10.4236/am.2010.15051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040884017
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.410410.0 schema:alternateName Schlumberger (France)
100 schema:name Schlumberger Ltd, 92142, Clamart Cedex, France
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
103 schema:name Institute of Mathematics and Mechanics, UB RAS, 620990, Yekaterinburg, Russia
104 Ural Federal University, 620002, Yekaterinburg, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...