The Wiener–Hopf and residue calculus solutions for a submerged semi-infinite elastic plate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-11-09

AUTHORS

T. D. Williams, Michael H. Meylan

ABSTRACT

We present a solution for the interaction of normally incident linear waves with a submerged elastic plate of semi-infinite extent, where the water has finite depth. While the problem has been solved previously by the eigenfunction-matching method, the present study shows that this problem is also amenable to the more analytical, and extremely efficient, Wiener–Hopf (WH) and residue calculus (RC) methods. We also show that the WH and RC solutions are actually equivalent for problems of this type, a result which applies to many other problems in linear wave theory. (e.g., the much-studied floating elastic plate scattering problem, or acoustic wave propagation in a duct where one wall has an abrupt change in properties.) We present numerical results and a detailed convergence study, and discuss as well the scattering by a submerged rigid dock, particularly the radiation condition beneath the dock. More... »

PAGES

81-106

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10665-011-9518-9

DOI

http://dx.doi.org/10.1007/s10665-011-9518-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006623353


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nansen Environmental and Remote Sensing Centre, Thorm\u00f8hlensgate 47, 5006, Bergen, Norway", 
          "id": "http://www.grid.ac/institutes/grid.7914.b", 
          "name": [
            "Nansen Environmental and Remote Sensing Centre, Thorm\u00f8hlensgate 47, 5006, Bergen, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "T. D.", 
        "id": "sg:person.011572757355.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011572757355.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meylan", 
        "givenName": "Michael H.", 
        "id": "sg:person.01122032226.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122032226.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10665-006-9104-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005891262", 
          "https://doi.org/10.1007/s10665-006-9104-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10665-009-9355-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001023432", 
          "https://doi.org/10.1007/s10665-009-9355-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022042120610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031138667", 
          "https://doi.org/10.1023/a:1022042120610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025106408548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036137946", 
          "https://doi.org/10.1023/a:1025106408548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:engi.0000017477.58851.af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042271441", 
          "https://doi.org/10.1023/b:engi.0000017477.58851.af"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11-09", 
    "datePublishedReg": "2011-11-09", 
    "description": "We present a solution for the interaction of normally incident linear waves with a submerged elastic plate of semi-infinite extent, where the water has finite depth. While the problem has been solved previously by the eigenfunction-matching method, the present study shows that this problem is also amenable to the more analytical, and extremely efficient, Wiener\u2013Hopf (WH) and residue calculus (RC) methods. We also show that the WH and RC solutions are actually equivalent for problems of this type, a result which applies to many other problems in linear wave theory. (e.g., the much-studied floating elastic plate scattering problem, or acoustic wave propagation in a duct where one wall has an abrupt change in properties.) We present numerical results and a detailed convergence study, and discuss as well the scattering by a submerged rigid dock, particularly the radiation condition beneath the dock.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10665-011-9518-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041781", 
        "issn": [
          "0022-0833", 
          "1573-2703"
        ], 
        "name": "Journal of Engineering Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "keywords": [
      "linear wave theory", 
      "incident linear waves", 
      "semi-infinite extent", 
      "submerged elastic plate", 
      "elastic plate", 
      "semi-infinite elastic plate", 
      "finite depth", 
      "linear waves", 
      "wave theory", 
      "RC solutions", 
      "detailed convergence study", 
      "convergence study", 
      "numerical results", 
      "radiation conditions", 
      "plate", 
      "Wiener-Hopf", 
      "solution", 
      "rigid dock", 
      "calculus method", 
      "waves", 
      "residue calculus method", 
      "water", 
      "method", 
      "depth", 
      "problem", 
      "results", 
      "dock", 
      "conditions", 
      "scattering", 
      "types", 
      "study", 
      "theory", 
      "interaction", 
      "present study", 
      "extent", 
      "eigenfunction-matching method", 
      "submerged rigid dock", 
      "residue calculus solutions", 
      "calculus solutions", 
      "submerged semi-infinite elastic plate"
    ], 
    "name": "The Wiener\u2013Hopf and residue calculus solutions for a submerged semi-infinite elastic plate", 
    "pagination": "81-106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006623353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10665-011-9518-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10665-011-9518-9", 
      "https://app.dimensions.ai/details/publication/pub.1006623353"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10665-011-9518-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-011-9518-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-011-9518-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-011-9518-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-011-9518-9'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      70 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10665-011-9518-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1016c61bfa934902b9d585b8976a9654
4 schema:citation sg:pub.10.1007/s10665-006-9104-8
5 sg:pub.10.1007/s10665-009-9355-2
6 sg:pub.10.1023/a:1022042120610
7 sg:pub.10.1023/a:1025106408548
8 sg:pub.10.1023/b:engi.0000017477.58851.af
9 schema:datePublished 2011-11-09
10 schema:datePublishedReg 2011-11-09
11 schema:description We present a solution for the interaction of normally incident linear waves with a submerged elastic plate of semi-infinite extent, where the water has finite depth. While the problem has been solved previously by the eigenfunction-matching method, the present study shows that this problem is also amenable to the more analytical, and extremely efficient, Wiener–Hopf (WH) and residue calculus (RC) methods. We also show that the WH and RC solutions are actually equivalent for problems of this type, a result which applies to many other problems in linear wave theory. (e.g., the much-studied floating elastic plate scattering problem, or acoustic wave propagation in a duct where one wall has an abrupt change in properties.) We present numerical results and a detailed convergence study, and discuss as well the scattering by a submerged rigid dock, particularly the radiation condition beneath the dock.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N6926696bc3cf41ea8fd5fef34e3289bd
16 N8881cc0cc68c4519860fe2bb9ae21e4c
17 sg:journal.1041781
18 schema:keywords RC solutions
19 Wiener-Hopf
20 calculus method
21 calculus solutions
22 conditions
23 convergence study
24 depth
25 detailed convergence study
26 dock
27 eigenfunction-matching method
28 elastic plate
29 extent
30 finite depth
31 incident linear waves
32 interaction
33 linear wave theory
34 linear waves
35 method
36 numerical results
37 plate
38 present study
39 problem
40 radiation conditions
41 residue calculus method
42 residue calculus solutions
43 results
44 rigid dock
45 scattering
46 semi-infinite elastic plate
47 semi-infinite extent
48 solution
49 study
50 submerged elastic plate
51 submerged rigid dock
52 submerged semi-infinite elastic plate
53 theory
54 types
55 water
56 wave theory
57 waves
58 schema:name The Wiener–Hopf and residue calculus solutions for a submerged semi-infinite elastic plate
59 schema:pagination 81-106
60 schema:productId N3fefaf565e484c99b0f28ae2db2eafd8
61 Ne4245fe0bbe348fd818507dfe34874ec
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006623353
63 https://doi.org/10.1007/s10665-011-9518-9
64 schema:sdDatePublished 2022-01-01T18:25
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7d4b4935dc54454abb113857890490ba
67 schema:url https://doi.org/10.1007/s10665-011-9518-9
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1016c61bfa934902b9d585b8976a9654 rdf:first sg:person.011572757355.69
72 rdf:rest N7f095243df704c309d7fcc95ae5d040c
73 N3fefaf565e484c99b0f28ae2db2eafd8 schema:name doi
74 schema:value 10.1007/s10665-011-9518-9
75 rdf:type schema:PropertyValue
76 N6926696bc3cf41ea8fd5fef34e3289bd schema:volumeNumber 75
77 rdf:type schema:PublicationVolume
78 N7d4b4935dc54454abb113857890490ba schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N7f095243df704c309d7fcc95ae5d040c rdf:first sg:person.01122032226.30
81 rdf:rest rdf:nil
82 N8881cc0cc68c4519860fe2bb9ae21e4c schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 Ne4245fe0bbe348fd818507dfe34874ec schema:name dimensions_id
85 schema:value pub.1006623353
86 rdf:type schema:PropertyValue
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1041781 schema:issn 0022-0833
94 1573-2703
95 schema:name Journal of Engineering Mathematics
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.01122032226.30 schema:affiliation grid-institutes:grid.9654.e
99 schema:familyName Meylan
100 schema:givenName Michael H.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122032226.30
102 rdf:type schema:Person
103 sg:person.011572757355.69 schema:affiliation grid-institutes:grid.7914.b
104 schema:familyName Williams
105 schema:givenName T. D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011572757355.69
107 rdf:type schema:Person
108 sg:pub.10.1007/s10665-006-9104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005891262
109 https://doi.org/10.1007/s10665-006-9104-8
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10665-009-9355-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001023432
112 https://doi.org/10.1007/s10665-009-9355-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1022042120610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031138667
115 https://doi.org/10.1023/a:1022042120610
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/a:1025106408548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036137946
118 https://doi.org/10.1023/a:1025106408548
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/b:engi.0000017477.58851.af schema:sameAs https://app.dimensions.ai/details/publication/pub.1042271441
121 https://doi.org/10.1023/b:engi.0000017477.58851.af
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.7914.b schema:alternateName Nansen Environmental and Remote Sensing Centre, Thormøhlensgate 47, 5006, Bergen, Norway
124 schema:name Nansen Environmental and Remote Sensing Centre, Thormøhlensgate 47, 5006, Bergen, Norway
125 rdf:type schema:Organization
126 grid-institutes:grid.9654.e schema:alternateName Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
127 schema:name Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...