Asymptotic reflection of linear water waves by submerged horizontal porous plates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

David V. Evans, Malte A. Peter

ABSTRACT

On the basis of linear water-wave theory, an explicit expression is presented for the reflection coefficient R∞ when a plane wave is obliquely incident upon a semi-infinite porous plate in water of finite depth. The expression, which correctly models the singularity in velocity at the edge of the plate, does not rely on knowledge of any of the complex-valued eigenvalues or corresponding vertical eigenfunctions in the region occupied by the plate. The solution R∞ is the asymptotic limit of the reflection coefficient R as a → ∞, for a plate of finite length a bounded by a rigid vertical wall, and forms the basis of a rapidly convergent expansion for R over a wide range of values of a. The special case of normal incidence is relevant to the design of submerged wave absorbers in a narrow wave tank. Modifications necessary to account for a finite submerged porous plate in a fluid extending to infinity in both horizontal directions are discussed. More... »

PAGES

135-154

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10665-009-9355-2

DOI

http://dx.doi.org/10.1007/s10665-009-9355-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001023432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Mathematics, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "David V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Department of Mathematics, University of Auckland, Auckland, New Zealand", 
            "Institute of Mathematics, University of Augsburg, Augsburg, Germany", 
            "Augsburg Centre for Innovative Technologies, University of Augsburg, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peter", 
        "givenName": "Malte A.", 
        "id": "sg:person.011265737545.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265737545.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0021-8928(04)00057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001518510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2125(03)00003-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007980172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004389503576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035577025", 
          "https://doi.org/10.1023/a:1004389503576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0029-8018(97)00037-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112095002849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053747994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112083001676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053955488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112099005145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053997388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1994)120:12(2575)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057582593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/49.1.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059685399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/44.3.487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059984944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/hbp008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059985739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21914/anziamj.v44i0.495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069281065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1950-019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072263711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420036060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095905323"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "On the basis of linear water-wave theory, an explicit expression is presented for the reflection coefficient R\u221e when a plane wave is obliquely incident upon a semi-infinite porous plate in water of finite depth. The expression, which correctly models the singularity in velocity at the edge of the plate, does not rely on knowledge of any of the complex-valued eigenvalues or corresponding vertical eigenfunctions in the region occupied by the plate. The solution R\u221e is the asymptotic limit of the reflection coefficient R as a \u2192 \u221e, for a plate of finite length a bounded by a rigid vertical wall, and forms the basis of a rapidly convergent expansion for R over a wide range of values of a. The special case of normal incidence is relevant to the design of submerged wave absorbers in a narrow wave tank. Modifications necessary to account for a finite submerged porous plate in a fluid extending to infinity in both horizontal directions are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10665-009-9355-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041781", 
        "issn": [
          "0022-0833", 
          "1573-2703"
        ], 
        "name": "Journal of Engineering Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "Asymptotic reflection of linear water waves by submerged horizontal porous plates", 
    "pagination": "135-154", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04e06ac05260a776f1708b68115880fb5f87d12ae4e045399568dd9192421dc6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10665-009-9355-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001023432"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10665-009-9355-2", 
      "https://app.dimensions.ai/details/publication/pub.1001023432"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10665-009-9355-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9355-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9355-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9355-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9355-2'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10665-009-9355-2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N8f07445f191d42bfaa6a879c6aa7e227
4 schema:citation sg:pub.10.1023/a:1004389503576
5 https://doi.org/10.1016/s0021-8928(04)00057-7
6 https://doi.org/10.1016/s0029-8018(97)00037-1
7 https://doi.org/10.1016/s0165-2125(03)00003-9
8 https://doi.org/10.1017/s0022112083001676
9 https://doi.org/10.1017/s0022112095002849
10 https://doi.org/10.1017/s0022112099005145
11 https://doi.org/10.1061/(asce)0733-9399(1994)120:12(2575)
12 https://doi.org/10.1093/imamat/49.1.45
13 https://doi.org/10.1093/qjmam/44.3.487
14 https://doi.org/10.1093/qjmam/hbp008
15 https://doi.org/10.1201/9781420036060
16 https://doi.org/10.21914/anziamj.v44i0.495
17 https://doi.org/10.4153/cjm-1950-019-2
18 schema:datePublished 2011-03
19 schema:datePublishedReg 2011-03-01
20 schema:description On the basis of linear water-wave theory, an explicit expression is presented for the reflection coefficient R∞ when a plane wave is obliquely incident upon a semi-infinite porous plate in water of finite depth. The expression, which correctly models the singularity in velocity at the edge of the plate, does not rely on knowledge of any of the complex-valued eigenvalues or corresponding vertical eigenfunctions in the region occupied by the plate. The solution R∞ is the asymptotic limit of the reflection coefficient R as a → ∞, for a plate of finite length a bounded by a rigid vertical wall, and forms the basis of a rapidly convergent expansion for R over a wide range of values of a. The special case of normal incidence is relevant to the design of submerged wave absorbers in a narrow wave tank. Modifications necessary to account for a finite submerged porous plate in a fluid extending to infinity in both horizontal directions are discussed.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N74a61b40f1c24a4589d284d036f97443
25 Nb45fe1901d03447ca9266ad246a55e61
26 sg:journal.1041781
27 schema:name Asymptotic reflection of linear water waves by submerged horizontal porous plates
28 schema:pagination 135-154
29 schema:productId N317136b42e534dcb93a9b3801b052fe1
30 N7bb1c976048240b0b910e6bcddf2b309
31 N93d2c16273934656ad4d67f0d35db13f
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001023432
33 https://doi.org/10.1007/s10665-009-9355-2
34 schema:sdDatePublished 2019-04-11T00:10
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N8da07307e9f04fbd81d1ef0400b0f502
37 schema:url http://link.springer.com/10.1007/s10665-009-9355-2
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N317136b42e534dcb93a9b3801b052fe1 schema:name doi
42 schema:value 10.1007/s10665-009-9355-2
43 rdf:type schema:PropertyValue
44 N45c7a898ccec43d3973c2bf4bd3fe0d8 rdf:first sg:person.011265737545.69
45 rdf:rest rdf:nil
46 N74a61b40f1c24a4589d284d036f97443 schema:volumeNumber 69
47 rdf:type schema:PublicationVolume
48 N7bb1c976048240b0b910e6bcddf2b309 schema:name readcube_id
49 schema:value 04e06ac05260a776f1708b68115880fb5f87d12ae4e045399568dd9192421dc6
50 rdf:type schema:PropertyValue
51 N8da07307e9f04fbd81d1ef0400b0f502 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N8f07445f191d42bfaa6a879c6aa7e227 rdf:first N9dea6325c0974f45a8f1ecbe1d48e699
54 rdf:rest N45c7a898ccec43d3973c2bf4bd3fe0d8
55 N93d2c16273934656ad4d67f0d35db13f schema:name dimensions_id
56 schema:value pub.1001023432
57 rdf:type schema:PropertyValue
58 N9dea6325c0974f45a8f1ecbe1d48e699 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
59 schema:familyName Evans
60 schema:givenName David V.
61 rdf:type schema:Person
62 Nb45fe1901d03447ca9266ad246a55e61 schema:issueNumber 2-3
63 rdf:type schema:PublicationIssue
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
68 schema:name Interdisciplinary Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1041781 schema:issn 0022-0833
71 1573-2703
72 schema:name Journal of Engineering Mathematics
73 rdf:type schema:Periodical
74 sg:person.011265737545.69 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
75 schema:familyName Peter
76 schema:givenName Malte A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265737545.69
78 rdf:type schema:Person
79 sg:pub.10.1023/a:1004389503576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035577025
80 https://doi.org/10.1023/a:1004389503576
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/s0021-8928(04)00057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001518510
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0029-8018(97)00037-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049104906
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0165-2125(03)00003-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007980172
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/s0022112083001676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053955488
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0022112095002849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053747994
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0022112099005145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053997388
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1061/(asce)0733-9399(1994)120:12(2575) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057582593
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1093/imamat/49.1.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059685399
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1093/qjmam/44.3.487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059984944
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1093/qjmam/hbp008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059985739
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1201/9781420036060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095905323
103 rdf:type schema:CreativeWork
104 https://doi.org/10.21914/anziamj.v44i0.495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069281065
105 rdf:type schema:CreativeWork
106 https://doi.org/10.4153/cjm-1950-019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263711
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
109 schema:name School of Mathematics, University of Bristol, Bristol, UK
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
112 schema:name Augsburg Centre for Innovative Technologies, University of Augsburg, Augsburg, Germany
113 Department of Mathematics, University of Auckland, Auckland, New Zealand
114 Institute of Mathematics, University of Augsburg, Augsburg, Germany
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...