Ontology type: schema:ScholarlyArticle
2009-06-02
AUTHORSD. Karmakar, J. Bhattacharjee, T. Sahoo
ABSTRACTOblique flexural gravity-wave scattering due to an abrupt change in water depth in the presence of a compressive force is investigated based on the linearized water-wave theory in the case of finite water depth and shallow-water approximation. Using the results for a single step, wide-spacing approximation is used to analyze wave transformation by multiple steps and submerged block. An energy relation for oblique flexural gravity-wave scattering due to a change in bottom topography is derived using the argument of wave energy flux and is used to check the accuracy of the computation. The changes in water depth significantly contribute to the change in the scattering coefficients. In the case of oblique wave scattering, critical angles are observed in certain cases. Further, a resonating pattern in the reflection coefficients is observed due to change in the water depth irrespective of the presence of a compressive force in the case of a submerged block. More... »
PAGES325-341
http://scigraph.springernature.com/pub.10.1007/s10665-009-9297-8
DOIhttp://dx.doi.org/10.1007/s10665-009-9297-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028572391
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Maritime Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, 721 302, Kharagpur, India",
"id": "http://www.grid.ac/institutes/grid.429017.9",
"name": [
"Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, 721 302, Kharagpur, India"
],
"type": "Organization"
},
"familyName": "Karmakar",
"givenName": "D.",
"id": "sg:person.01177723522.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177723522.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Marine Technology and Engineering, Technical University of Lisbon, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal",
"id": "http://www.grid.ac/institutes/grid.9983.b",
"name": [
"Centre for Marine Technology and Engineering, Technical University of Lisbon, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal"
],
"type": "Organization"
},
"familyName": "Bhattacharjee",
"givenName": "J.",
"id": "sg:person.01015361722.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015361722.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, 721 302, Kharagpur, India",
"id": "http://www.grid.ac/institutes/grid.429017.9",
"name": [
"Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, 721 302, Kharagpur, India"
],
"type": "Organization"
},
"familyName": "Sahoo",
"givenName": "T.",
"id": "sg:person.01262035176.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262035176.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10665-007-9203-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011863144",
"https://doi.org/10.1007/s10665-007-9203-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-06-02",
"datePublishedReg": "2009-06-02",
"description": "Oblique flexural gravity-wave scattering due to an abrupt change in water depth in the presence of a compressive force is investigated based on the linearized water-wave theory in the case of finite water depth and shallow-water approximation. Using the results for a single step, wide-spacing approximation is used to analyze wave transformation by multiple steps and submerged block. An energy relation for oblique flexural gravity-wave scattering due to a change in bottom topography is derived using the argument of wave energy flux and is used to check the accuracy of the computation. The changes in water depth significantly contribute to the change in the scattering coefficients. In the case of oblique wave scattering, critical angles are observed in certain cases. Further, a resonating pattern in the reflection coefficients is observed due to change in the water depth irrespective of the presence of a compressive force in the case of a submerged block.",
"genre": "article",
"id": "sg:pub.10.1007/s10665-009-9297-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041781",
"issn": [
"0022-0833",
"1573-2703"
],
"name": "Journal of Engineering Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "66"
}
],
"keywords": [
"flexural gravity-wave scattering",
"linearized water wave theory",
"water depth",
"finite water depth",
"bottom topography",
"water wave theory",
"compressive force",
"shallow water approximation",
"wave energy flux",
"Oblique Wave Scattering",
"submerged block",
"wave transformation",
"energy flux",
"reflection coefficient",
"critical angle",
"wave scattering",
"depth",
"force",
"single step",
"topography",
"coefficient",
"abrupt changes",
"energy relations",
"flux",
"angle",
"step",
"accuracy",
"approximation",
"scattering",
"block",
"computation",
"certain cases",
"results",
"multiple steps",
"cases",
"changes",
"transformation",
"presence",
"theory",
"relation",
"patterns",
"argument"
],
"name": "Oblique flexural gravity-wave scattering due to changes in bottom topography",
"pagination": "325-341",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028572391"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10665-009-9297-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10665-009-9297-8",
"https://app.dimensions.ai/details/publication/pub.1028572391"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:56",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_483.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10665-009-9297-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9297-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9297-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9297-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10665-009-9297-8'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
22 PREDICATES
68 URIs
59 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10665-009-9297-8 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0911 |
3 | ″ | schema:author | Nd011e44977a44a4f8c2e27a6292097b7 |
4 | ″ | schema:citation | sg:pub.10.1007/s10665-007-9203-1 |
5 | ″ | schema:datePublished | 2009-06-02 |
6 | ″ | schema:datePublishedReg | 2009-06-02 |
7 | ″ | schema:description | Oblique flexural gravity-wave scattering due to an abrupt change in water depth in the presence of a compressive force is investigated based on the linearized water-wave theory in the case of finite water depth and shallow-water approximation. Using the results for a single step, wide-spacing approximation is used to analyze wave transformation by multiple steps and submerged block. An energy relation for oblique flexural gravity-wave scattering due to a change in bottom topography is derived using the argument of wave energy flux and is used to check the accuracy of the computation. The changes in water depth significantly contribute to the change in the scattering coefficients. In the case of oblique wave scattering, critical angles are observed in certain cases. Further, a resonating pattern in the reflection coefficients is observed due to change in the water depth irrespective of the presence of a compressive force in the case of a submerged block. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N59cdf42963c34122849c254a40f47b5b |
12 | ″ | ″ | N74327391e0b44739ab8f84e411f3dadb |
13 | ″ | ″ | sg:journal.1041781 |
14 | ″ | schema:keywords | Oblique Wave Scattering |
15 | ″ | ″ | abrupt changes |
16 | ″ | ″ | accuracy |
17 | ″ | ″ | angle |
18 | ″ | ″ | approximation |
19 | ″ | ″ | argument |
20 | ″ | ″ | block |
21 | ″ | ″ | bottom topography |
22 | ″ | ″ | cases |
23 | ″ | ″ | certain cases |
24 | ″ | ″ | changes |
25 | ″ | ″ | coefficient |
26 | ″ | ″ | compressive force |
27 | ″ | ″ | computation |
28 | ″ | ″ | critical angle |
29 | ″ | ″ | depth |
30 | ″ | ″ | energy flux |
31 | ″ | ″ | energy relations |
32 | ″ | ″ | finite water depth |
33 | ″ | ″ | flexural gravity-wave scattering |
34 | ″ | ″ | flux |
35 | ″ | ″ | force |
36 | ″ | ″ | linearized water wave theory |
37 | ″ | ″ | multiple steps |
38 | ″ | ″ | patterns |
39 | ″ | ″ | presence |
40 | ″ | ″ | reflection coefficient |
41 | ″ | ″ | relation |
42 | ″ | ″ | results |
43 | ″ | ″ | scattering |
44 | ″ | ″ | shallow water approximation |
45 | ″ | ″ | single step |
46 | ″ | ″ | step |
47 | ″ | ″ | submerged block |
48 | ″ | ″ | theory |
49 | ″ | ″ | topography |
50 | ″ | ″ | transformation |
51 | ″ | ″ | water depth |
52 | ″ | ″ | water wave theory |
53 | ″ | ″ | wave energy flux |
54 | ″ | ″ | wave scattering |
55 | ″ | ″ | wave transformation |
56 | ″ | schema:name | Oblique flexural gravity-wave scattering due to changes in bottom topography |
57 | ″ | schema:pagination | 325-341 |
58 | ″ | schema:productId | N02f68368deb14b7088d13cc4de8dd790 |
59 | ″ | ″ | Na37b688676e34a8394c202cdf483b1ca |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028572391 |
61 | ″ | ″ | https://doi.org/10.1007/s10665-009-9297-8 |
62 | ″ | schema:sdDatePublished | 2022-05-10T09:56 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N36328df64a164af389f875ce94e4d661 |
65 | ″ | schema:url | https://doi.org/10.1007/s10665-009-9297-8 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | articles |
68 | ″ | rdf:type | schema:ScholarlyArticle |
69 | N02f68368deb14b7088d13cc4de8dd790 | schema:name | doi |
70 | ″ | schema:value | 10.1007/s10665-009-9297-8 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N36328df64a164af389f875ce94e4d661 | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | N59cdf42963c34122849c254a40f47b5b | schema:issueNumber | 4 |
75 | ″ | rdf:type | schema:PublicationIssue |
76 | N74327391e0b44739ab8f84e411f3dadb | schema:volumeNumber | 66 |
77 | ″ | rdf:type | schema:PublicationVolume |
78 | Na37b688676e34a8394c202cdf483b1ca | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1028572391 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Ncf3ea60893dd46f1bc09b459a8fbfd9a | rdf:first | sg:person.01262035176.31 |
82 | ″ | rdf:rest | rdf:nil |
83 | Nd011e44977a44a4f8c2e27a6292097b7 | rdf:first | sg:person.01177723522.80 |
84 | ″ | rdf:rest | Ne08aa9e7b5dd44d1ac6535426850c981 |
85 | Ne08aa9e7b5dd44d1ac6535426850c981 | rdf:first | sg:person.01015361722.32 |
86 | ″ | rdf:rest | Ncf3ea60893dd46f1bc09b459a8fbfd9a |
87 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Engineering |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | anzsrc-for:0911 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Maritime Engineering |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | sg:journal.1041781 | schema:issn | 0022-0833 |
94 | ″ | ″ | 1573-2703 |
95 | ″ | schema:name | Journal of Engineering Mathematics |
96 | ″ | schema:publisher | Springer Nature |
97 | ″ | rdf:type | schema:Periodical |
98 | sg:person.01015361722.32 | schema:affiliation | grid-institutes:grid.9983.b |
99 | ″ | schema:familyName | Bhattacharjee |
100 | ″ | schema:givenName | J. |
101 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015361722.32 |
102 | ″ | rdf:type | schema:Person |
103 | sg:person.01177723522.80 | schema:affiliation | grid-institutes:grid.429017.9 |
104 | ″ | schema:familyName | Karmakar |
105 | ″ | schema:givenName | D. |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177723522.80 |
107 | ″ | rdf:type | schema:Person |
108 | sg:person.01262035176.31 | schema:affiliation | grid-institutes:grid.429017.9 |
109 | ″ | schema:familyName | Sahoo |
110 | ″ | schema:givenName | T. |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262035176.31 |
112 | ″ | rdf:type | schema:Person |
113 | sg:pub.10.1007/s10665-007-9203-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011863144 |
114 | ″ | ″ | https://doi.org/10.1007/s10665-007-9203-1 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | grid-institutes:grid.429017.9 | schema:alternateName | Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, 721 302, Kharagpur, India |
117 | ″ | schema:name | Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, 721 302, Kharagpur, India |
118 | ″ | rdf:type | schema:Organization |
119 | grid-institutes:grid.9983.b | schema:alternateName | Centre for Marine Technology and Engineering, Technical University of Lisbon, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal |
120 | ″ | schema:name | Centre for Marine Technology and Engineering, Technical University of Lisbon, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal |
121 | ″ | rdf:type | schema:Organization |