Application of remodeled water quality indices for the appraisal of water quality in a Himalayan lake View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-11

AUTHORS

Mozim Shafi, Chander Prakash, Khalid Muzamil Gani

ABSTRACT

Natural and anthropogenic pollution influence the general hydrochemistry of freshwater sources. Effective management strategies need an accurate evaluation of the water quality parameters, and inferences extracted from the data should be based on the most appropriate statistical methods. Conventional water quality indices (WQI) being related to a large number of water quality parameters results in significant variability and analytical costs. The focus of this study was to develop a remodeled water quality index (WQImin) based on the localized trends in water quality and demonstrate it to understand water quality variations of Dal Lake (a freshwater lake in the Himalayan region). Spatio-temporal changes and trends of 14 water quality parameters were investigated that were arbitrated from the samples collected at 11 sampling locations during the water quality monitoring across the Dal Lake from September 2017 to August 2020. The results signify that the general mean WQI value was 81.9, and seasonal average WQI values ranges from 79.44 to 84.55. The water quality showed seasonal variance, with lowest values in summer, succeeded by autumn and winter, and highest in spring. Moreover, the results from stepwise multiple regression analysis indicated that the WQImin significantly correlates with six water quality parameters (ammonia, dissolved oxygen, chemical oxygen demand, temperature, turbidity, and nitrate) in Dal Lake. The WQImin model predicted the water quality of the Dal Lake with a coefficient of determination (R2) value of 0.96, root mean square error (RMSE) value of 4.1, and percentage error (PE) of 5.3%. The developed WQImin model can be applied as a cost-effective and efficacious approach to determine the water quality of fresh surface water bodies. More... »

PAGES

576

References to SciGraph publications

  • 2009-03-25. Water quality assessment of Lake Pandu Bodhan, Andhra Pradesh State, India in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2005-09-26. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2007-02-06. Application of Water Quality Indices and Dissolved Oxygen as Indicators for River Water Classification and Urban Impact Assessment in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2013-08-30. Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011 in WATER RESOURCES MANAGEMENT
  • 2018-03-07. Tempo-Spatial Analysis of Water Quality in the Three Gorges Reservoir, China, after its 175-m Experimental Impoundment in WATER RESOURCES MANAGEMENT
  • 2002-10-15. Environmetric modeling and interpretation of river water monitoring data in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2020-09-14. Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya, India in APPLIED WATER SCIENCE
  • 2016-04-16. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2014-07-25. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey) in ENVIRONMENTAL EARTH SCIENCES
  • 1994-10. Water quality index applied to rivers in the Vistula river basin in Poland in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 1999-09. Understanding the oxygen budget and related ecological processes in the river Mosel: the RIVERSTRAHLER approach in HYDROBIOLOGIA
  • 2007-02-10. Deterioration of water quality of Surma river in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2011-11-25. Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis in ENVIRONMENTAL EARTH SCIENCES
  • 2005-11. Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10661-022-10268-5

    DOI

    http://dx.doi.org/10.1007/s10661-022-10268-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149412462

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35821153


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Monitoring", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lakes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nitrates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Water Quality", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India", 
              "id": "http://www.grid.ac/institutes/grid.419487.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shafi", 
            "givenName": "Mozim", 
            "id": "sg:person.013250132352.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013250132352.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India", 
              "id": "http://www.grid.ac/institutes/grid.419487.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prakash", 
            "givenName": "Chander", 
            "id": "sg:person.014045512752.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014045512752.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, Srinagar, India", 
              "id": "http://www.grid.ac/institutes/grid.419487.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, Srinagar, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gani", 
            "givenName": "Khalid Muzamil", 
            "id": "sg:person.0734472103.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734472103.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11356-016-6646-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015525330", 
              "https://doi.org/10.1007/s11356-016-6646-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00546659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030315530", 
              "https://doi.org/10.1007/bf00546659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-009-0844-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005735160", 
              "https://doi.org/10.1007/s10661-009-0844-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-005-0161-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519063", 
              "https://doi.org/10.1007/s00704-005-0161-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-011-1458-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033008991", 
              "https://doi.org/10.1007/s12665-011-1458-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-007-9612-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047172075", 
              "https://doi.org/10.1007/s10661-007-9612-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-018-1918-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101378584", 
              "https://doi.org/10.1007/s11269-018-1918-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-006-9505-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046914546", 
              "https://doi.org/10.1007/s10661-006-9505-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1003894200796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009395837", 
              "https://doi.org/10.1023/a:1003894200796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-002-1559-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052753326", 
              "https://doi.org/10.1007/s00216-002-1559-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-014-3531-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040847379", 
              "https://doi.org/10.1007/s12665-014-3531-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-005-8064-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010828794", 
              "https://doi.org/10.1007/s10661-005-8064-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-020-01300-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130841695", 
              "https://doi.org/10.1007/s13201-020-01300-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-013-0425-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037704510", 
              "https://doi.org/10.1007/s11269-013-0425-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-11", 
        "datePublishedReg": "2022-07-11", 
        "description": "Natural and anthropogenic pollution influence the general hydrochemistry of freshwater sources. Effective management strategies need an accurate evaluation of the water quality parameters, and inferences extracted from the data should be based on the most appropriate statistical methods. Conventional water quality indices (WQI) being related to a large number of water quality parameters results in significant variability and analytical costs. The focus of this study was to develop a remodeled water quality index (WQImin) based on the localized trends in water quality and demonstrate it to understand water quality variations of Dal Lake (a freshwater lake in the Himalayan region). Spatio-temporal changes and trends of 14 water quality parameters were investigated that were arbitrated from the samples collected at 11 sampling locations during the water quality monitoring across the Dal Lake from September 2017 to August 2020. The results signify that the general mean WQI value was 81.9, and seasonal average WQI values ranges from 79.44 to 84.55. The water quality showed seasonal variance, with lowest values in summer, succeeded by autumn and winter, and highest in spring. Moreover, the results from stepwise multiple regression analysis indicated that the WQImin significantly correlates with six water quality parameters (ammonia, dissolved oxygen, chemical oxygen demand, temperature, turbidity, and nitrate) in Dal Lake. The WQImin model predicted the water quality of the Dal Lake with a coefficient of determination (R2) value of 0.96, root mean square error (RMSE) value of 4.1, and percentage error (PE) of 5.3%. The developed WQImin model can be applied as a cost-effective and efficacious approach to determine the water quality of fresh surface water bodies.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10661-022-10268-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1095684", 
            "issn": [
              "0167-6369", 
              "1573-2959"
            ], 
            "name": "Environmental Monitoring and Assessment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "194"
          }
        ], 
        "keywords": [
          "water quality index", 
          "water quality parameters", 
          "water quality", 
          "Dal Lake", 
          "WQI values", 
          "average WQI value", 
          "freshwater sources", 
          "water quality variations", 
          "surface water bodies", 
          "spatio-temporal changes", 
          "general hydrochemistry", 
          "conventional water quality index", 
          "Himalayan lakes", 
          "quality parameters", 
          "water quality monitoring", 
          "pollution influence", 
          "root mean square error (RMSE) values", 
          "lakes", 
          "seasonal variance", 
          "water bodies", 
          "sampling locations", 
          "appropriate statistical methods", 
          "statistical methods", 
          "square error values", 
          "analytical costs", 
          "quality variation", 
          "significant variability", 
          "Quality Index", 
          "quality monitoring", 
          "mean square error values", 
          "parameters results", 
          "percentage error", 
          "effective management strategies", 
          "lower values", 
          "hydrochemistry", 
          "winter", 
          "summer", 
          "trends", 
          "spring", 
          "determination values", 
          "parameters", 
          "variability", 
          "error values", 
          "autumn", 
          "management strategies", 
          "large number", 
          "WQImin", 
          "accurate evaluation", 
          "model", 
          "inference", 
          "variation", 
          "stepwise multiple regression analysis", 
          "source", 
          "location", 
          "values", 
          "error", 
          "coefficient", 
          "changes", 
          "index", 
          "results", 
          "data", 
          "applications", 
          "approach", 
          "quality", 
          "influence", 
          "body", 
          "samples", 
          "monitoring", 
          "variance", 
          "number", 
          "multiple regression analysis", 
          "cost", 
          "analysis", 
          "appraisal", 
          "study", 
          "strategies", 
          "focus", 
          "regression analysis", 
          "evaluation", 
          "method", 
          "efficacious approach"
        ], 
        "name": "Application of remodeled water quality indices for the appraisal of water quality in a Himalayan lake", 
        "pagination": "576", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149412462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10661-022-10268-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35821153"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10661-022-10268-5", 
          "https://app.dimensions.ai/details/publication/pub.1149412462"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_936.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10661-022-10268-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10268-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10268-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10268-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10268-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      21 PREDICATES      125 URIs      103 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10661-022-10268-5 schema:about N3d2f0ff138dc402292608e133c5880c0
    2 N4891787b50e54febbbe5c17ae56e23ad
    3 Naef9f645d90545718bc9d0d6d35507d0
    4 Nc1839f91a66d46bbb0889bc54898ba84
    5 Nd8515e63070b47bb881e12b0a413910a
    6 anzsrc-for:09
    7 anzsrc-for:0907
    8 schema:author Na15567184c5b44f0afc24dba4ff52db7
    9 schema:citation sg:pub.10.1007/bf00546659
    10 sg:pub.10.1007/s00216-002-1559-5
    11 sg:pub.10.1007/s00704-005-0161-0
    12 sg:pub.10.1007/s10661-005-8064-1
    13 sg:pub.10.1007/s10661-006-9505-1
    14 sg:pub.10.1007/s10661-007-9612-7
    15 sg:pub.10.1007/s10661-009-0844-6
    16 sg:pub.10.1007/s11269-013-0425-x
    17 sg:pub.10.1007/s11269-018-1918-4
    18 sg:pub.10.1007/s11356-016-6646-9
    19 sg:pub.10.1007/s12665-011-1458-1
    20 sg:pub.10.1007/s12665-014-3531-z
    21 sg:pub.10.1007/s13201-020-01300-5
    22 sg:pub.10.1023/a:1003894200796
    23 schema:datePublished 2022-07-11
    24 schema:datePublishedReg 2022-07-11
    25 schema:description Natural and anthropogenic pollution influence the general hydrochemistry of freshwater sources. Effective management strategies need an accurate evaluation of the water quality parameters, and inferences extracted from the data should be based on the most appropriate statistical methods. Conventional water quality indices (WQI) being related to a large number of water quality parameters results in significant variability and analytical costs. The focus of this study was to develop a remodeled water quality index (WQImin) based on the localized trends in water quality and demonstrate it to understand water quality variations of Dal Lake (a freshwater lake in the Himalayan region). Spatio-temporal changes and trends of 14 water quality parameters were investigated that were arbitrated from the samples collected at 11 sampling locations during the water quality monitoring across the Dal Lake from September 2017 to August 2020. The results signify that the general mean WQI value was 81.9, and seasonal average WQI values ranges from 79.44 to 84.55. The water quality showed seasonal variance, with lowest values in summer, succeeded by autumn and winter, and highest in spring. Moreover, the results from stepwise multiple regression analysis indicated that the WQImin significantly correlates with six water quality parameters (ammonia, dissolved oxygen, chemical oxygen demand, temperature, turbidity, and nitrate) in Dal Lake. The WQImin model predicted the water quality of the Dal Lake with a coefficient of determination (R2) value of 0.96, root mean square error (RMSE) value of 4.1, and percentage error (PE) of 5.3%. The developed WQImin model can be applied as a cost-effective and efficacious approach to determine the water quality of fresh surface water bodies.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N201c8f26477c43429eccdab7948db712
    29 N79df64b01f894da69eaff2a5791374db
    30 sg:journal.1095684
    31 schema:keywords Dal Lake
    32 Himalayan lakes
    33 Quality Index
    34 WQI values
    35 WQImin
    36 accurate evaluation
    37 analysis
    38 analytical costs
    39 applications
    40 appraisal
    41 approach
    42 appropriate statistical methods
    43 autumn
    44 average WQI value
    45 body
    46 changes
    47 coefficient
    48 conventional water quality index
    49 cost
    50 data
    51 determination values
    52 effective management strategies
    53 efficacious approach
    54 error
    55 error values
    56 evaluation
    57 focus
    58 freshwater sources
    59 general hydrochemistry
    60 hydrochemistry
    61 index
    62 inference
    63 influence
    64 lakes
    65 large number
    66 location
    67 lower values
    68 management strategies
    69 mean square error values
    70 method
    71 model
    72 monitoring
    73 multiple regression analysis
    74 number
    75 parameters
    76 parameters results
    77 percentage error
    78 pollution influence
    79 quality
    80 quality monitoring
    81 quality parameters
    82 quality variation
    83 regression analysis
    84 results
    85 root mean square error (RMSE) values
    86 samples
    87 sampling locations
    88 seasonal variance
    89 significant variability
    90 source
    91 spatio-temporal changes
    92 spring
    93 square error values
    94 statistical methods
    95 stepwise multiple regression analysis
    96 strategies
    97 study
    98 summer
    99 surface water bodies
    100 trends
    101 values
    102 variability
    103 variance
    104 variation
    105 water bodies
    106 water quality
    107 water quality index
    108 water quality monitoring
    109 water quality parameters
    110 water quality variations
    111 winter
    112 schema:name Application of remodeled water quality indices for the appraisal of water quality in a Himalayan lake
    113 schema:pagination 576
    114 schema:productId N88e855f1a6f1488eae0f85102657309a
    115 Ne7be0ec4c0ac4778a73c84dad7f656ac
    116 Nfd13d41880904efe9ffe2b59a8af7cb9
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149412462
    118 https://doi.org/10.1007/s10661-022-10268-5
    119 schema:sdDatePublished 2022-09-02T16:08
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher Na3537d9d85974472a0b401b3b567e392
    122 schema:url https://doi.org/10.1007/s10661-022-10268-5
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N137bd65690c04b909f72742bc833897a rdf:first sg:person.014045512752.70
    127 rdf:rest N90f17e5cc1254478a42f9acf3227c58b
    128 N201c8f26477c43429eccdab7948db712 schema:volumeNumber 194
    129 rdf:type schema:PublicationVolume
    130 N3d2f0ff138dc402292608e133c5880c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Environmental Monitoring
    132 rdf:type schema:DefinedTerm
    133 N4891787b50e54febbbe5c17ae56e23ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Nitrates
    135 rdf:type schema:DefinedTerm
    136 N79df64b01f894da69eaff2a5791374db schema:issueNumber 8
    137 rdf:type schema:PublicationIssue
    138 N88e855f1a6f1488eae0f85102657309a schema:name pubmed_id
    139 schema:value 35821153
    140 rdf:type schema:PropertyValue
    141 N90f17e5cc1254478a42f9acf3227c58b rdf:first sg:person.0734472103.63
    142 rdf:rest rdf:nil
    143 Na15567184c5b44f0afc24dba4ff52db7 rdf:first sg:person.013250132352.07
    144 rdf:rest N137bd65690c04b909f72742bc833897a
    145 Na3537d9d85974472a0b401b3b567e392 schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 Naef9f645d90545718bc9d0d6d35507d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Lakes
    149 rdf:type schema:DefinedTerm
    150 Nc1839f91a66d46bbb0889bc54898ba84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Seasons
    152 rdf:type schema:DefinedTerm
    153 Nd8515e63070b47bb881e12b0a413910a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Water Quality
    155 rdf:type schema:DefinedTerm
    156 Ne7be0ec4c0ac4778a73c84dad7f656ac schema:name dimensions_id
    157 schema:value pub.1149412462
    158 rdf:type schema:PropertyValue
    159 Nfd13d41880904efe9ffe2b59a8af7cb9 schema:name doi
    160 schema:value 10.1007/s10661-022-10268-5
    161 rdf:type schema:PropertyValue
    162 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Engineering
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Environmental Engineering
    167 rdf:type schema:DefinedTerm
    168 sg:journal.1095684 schema:issn 0167-6369
    169 1573-2959
    170 schema:name Environmental Monitoring and Assessment
    171 schema:publisher Springer Nature
    172 rdf:type schema:Periodical
    173 sg:person.013250132352.07 schema:affiliation grid-institutes:grid.419487.7
    174 schema:familyName Shafi
    175 schema:givenName Mozim
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013250132352.07
    177 rdf:type schema:Person
    178 sg:person.014045512752.70 schema:affiliation grid-institutes:grid.419487.7
    179 schema:familyName Prakash
    180 schema:givenName Chander
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014045512752.70
    182 rdf:type schema:Person
    183 sg:person.0734472103.63 schema:affiliation grid-institutes:grid.419487.7
    184 schema:familyName Gani
    185 schema:givenName Khalid Muzamil
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734472103.63
    187 rdf:type schema:Person
    188 sg:pub.10.1007/bf00546659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030315530
    189 https://doi.org/10.1007/bf00546659
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00216-002-1559-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052753326
    192 https://doi.org/10.1007/s00216-002-1559-5
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00704-005-0161-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519063
    195 https://doi.org/10.1007/s00704-005-0161-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10661-005-8064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010828794
    198 https://doi.org/10.1007/s10661-005-8064-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10661-006-9505-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046914546
    201 https://doi.org/10.1007/s10661-006-9505-1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s10661-007-9612-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047172075
    204 https://doi.org/10.1007/s10661-007-9612-7
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10661-009-0844-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005735160
    207 https://doi.org/10.1007/s10661-009-0844-6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11269-013-0425-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037704510
    210 https://doi.org/10.1007/s11269-013-0425-x
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s11269-018-1918-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101378584
    213 https://doi.org/10.1007/s11269-018-1918-4
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11356-016-6646-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015525330
    216 https://doi.org/10.1007/s11356-016-6646-9
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s12665-011-1458-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033008991
    219 https://doi.org/10.1007/s12665-011-1458-1
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s12665-014-3531-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040847379
    222 https://doi.org/10.1007/s12665-014-3531-z
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s13201-020-01300-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130841695
    225 https://doi.org/10.1007/s13201-020-01300-5
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1023/a:1003894200796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009395837
    228 https://doi.org/10.1023/a:1003894200796
    229 rdf:type schema:CreativeWork
    230 grid-institutes:grid.419487.7 schema:alternateName Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India
    231 Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, Srinagar, India
    232 schema:name Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India
    233 Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, Srinagar, India
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...