Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-13

AUTHORS

Najmeh Mozaffaree Pour, Oleksandr Karasov, Iuliia Burdun, Tõnu Oja

ABSTRACT

Over the recent two decades, land use/land cover (LULC) drastically changed in Estonia. Even though the population decreased by 11%, noticeable agricultural and forest land areas were turned into urban land. In this work, we analyzed those LULC changes by mapping the spatial characteristics of LULC and urban expansion in the years 2000–2019 in Estonia. Moreover, using the revealed spatiotemporal transitions of LULC, we simulated LULC and urban expansion for 2030. Landsat 5 and 8 data were used to estimate 147 spectral-textural indices in the Google Earth Engine cloud computing platform. After that, 19 selected indices were used to model LULC changes by applying the hybrid artificial neural network, cellular automata, and Markov chain analysis (ANN-CA-MCA). While determining spectral-textural indices is quite common for LULC classifications, utilization of these continues indices in LULC change detection and examining these indices at the landscape scale is still in infancy. This country-wide modeling approach provided the first comprehensive projection of future LULC utilizing spectral-textural indices. In this work, we utilized the hybrid ANN-CA-MCA model for predicting LULC in Estonia for 2030; we revealed that the predicted changes in LULC from 2019 to 2030 were similar to the observed changes from 2011 to 2019. The predicted change in the area of artificial surfaces was an increased rate of 1.33% to reach 787.04 km2 in total by 2030. Between 2019 and 2030, the other significant changes were the decrease of 34.57 km2 of forest lands and the increase of agricultural lands by 14.90 km2 and wetlands by 9.31 km2. These findings can develop a proper course of action for long-term spatial planning in Estonia. Therefore, a key policy priority should be to plan for the stable care of forest lands to maintain biodiversity. More... »

PAGES

584

References to SciGraph publications

  • 2017-06-13. An integrated object-based image analysis and CA-Markov model approach for modeling land use/land cover trends in the Sarab plain in ARABIAN JOURNAL OF GEOSCIENCES
  • 2018-02-14. Reading past landscapes: combining modern and historical records, maps, pollen-based vegetation reconstructions, and the socioeconomic background in LANDSCAPE ECOLOGY
  • 2021-03-31. Toward digital agricultural mapping in Africa: evidence of Northern Nigeria in ARABIAN JOURNAL OF GEOSCIENCES
  • 2019-05-06. Urban growth boundaries delineation coupling ecological constraints with a growth-driven model for the main urban area of Chongqing, China in GEOJOURNAL
  • 2019-04-09. Prediction of landscape pattern changes in a coastal river basin in south-eastern China in INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
  • 2020-02-26. Simulating spatial–temporal urban growth of a Moroccan metropolitan using CA–Markov model in SPATIAL INFORMATION RESEARCH
  • 2020-10-18. Assessment of urban sprawl using landscape metrics and Shannon’s entropy model approach in town level of Barrackpore sub-divisional region, India in MODELING EARTH SYSTEMS AND ENVIRONMENT
  • 2021-04-17. Urban classification using preserved information of high dimensional textural features of Sentinel-1 images in Tabriz, Iran in EARTH SCIENCE INFORMATICS
  • 2021-02-23. Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature in SN APPLIED SCIENCES
  • 2015-02-07. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-information in ENVIRONMENTAL PROCESSES
  • 2019-05-18. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: a case study in three gorges reservoir area of Chongqing, China in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2019-01-14. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2015-07-30. Simulating land use change by integrating landscape metrics into ANN-CA in a new way in FRONTIERS OF EARTH SCIENCE
  • 2008-12-25. The status, conservation and sustainable use of Estonian wetlands in WETLANDS ECOLOGY AND MANAGEMENT
  • 2020-08-16. Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India in GEOJOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10661-022-10266-7

    DOI

    http://dx.doi.org/10.1007/s10661-022-10266-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149440886

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35829789


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Agriculture", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conservation of Natural Resources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Monitoring", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Estonia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wetlands", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia", 
              "id": "http://www.grid.ac/institutes/grid.10939.32", 
              "name": [
                "Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mozaffaree Pour", 
            "givenName": "Najmeh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Digital Geography Lab, Department of Geosciences and Geography, Faculty of Sciences, University of Helsinki, (Gustaf H\u00e4llstr\u00f6min katu 2), PO Box 64, 00014, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia", 
                "Digital Geography Lab, Department of Geosciences and Geography, Faculty of Sciences, University of Helsinki, (Gustaf H\u00e4llstr\u00f6min katu 2), PO Box 64, 00014, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karasov", 
            "givenName": "Oleksandr", 
            "id": "sg:person.013300251320.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013300251320.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Built Environment, Aalto University, PO Box 14100, 00076, Espoo, Finland", 
              "id": "http://www.grid.ac/institutes/grid.5373.2", 
              "name": [
                "Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia", 
                "Department of Built Environment, Aalto University, PO Box 14100, 00076, Espoo, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burdun", 
            "givenName": "Iuliia", 
            "id": "sg:person.07476433643.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476433643.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia", 
              "id": "http://www.grid.ac/institutes/grid.10939.32", 
              "name": [
                "Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oja", 
            "givenName": "T\u00f5nu", 
            "id": "sg:person.010326134155.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010326134155.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10661-019-7200-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111404246", 
              "https://doi.org/10.1007/s10661-019-7200-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-021-06986-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136786876", 
              "https://doi.org/10.1007/s12517-021-06986-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10708-019-10014-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113943720", 
              "https://doi.org/10.1007/s10708-019-10014-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42452-021-04351-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135665618", 
              "https://doi.org/10.1007/s42452-021-04351-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-017-3012-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085991733", 
              "https://doi.org/10.1007/s12517-017-3012-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13762-018-2170-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113330548", 
              "https://doi.org/10.1007/s13762-018-2170-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40808-020-00990-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131874203", 
              "https://doi.org/10.1007/s40808-020-00990-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-020-00322-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125115181", 
              "https://doi.org/10.1007/s41324-020-00322-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10708-020-10274-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130148247", 
              "https://doi.org/10.1007/s10708-020-10274-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40710-015-0062-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052112805", 
              "https://doi.org/10.1007/s40710-015-0062-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11707-015-0522-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018180365", 
              "https://doi.org/10.1007/s11707-015-0522-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11273-008-9129-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046072002", 
              "https://doi.org/10.1007/s11273-008-9129-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-019-05127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114805604", 
              "https://doi.org/10.1007/s11356-019-05127-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12145-021-00617-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137283192", 
              "https://doi.org/10.1007/s12145-021-00617-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10980-018-0615-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101017557", 
              "https://doi.org/10.1007/s10980-018-0615-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-13", 
        "datePublishedReg": "2022-07-13", 
        "description": "Over the recent two decades, land use/land cover (LULC) drastically changed in Estonia. Even though the population decreased by 11%, noticeable agricultural and forest land areas were turned into urban land. In this work, we analyzed those LULC changes by mapping the spatial characteristics of LULC and urban expansion in the years 2000\u20132019 in Estonia. Moreover, using the revealed spatiotemporal transitions of LULC, we simulated LULC and urban expansion for 2030. Landsat 5 and 8 data were used to estimate 147 spectral-textural indices in the Google Earth Engine cloud computing platform. After that, 19 selected indices were used to model LULC changes by applying the hybrid artificial neural network, cellular automata, and Markov chain analysis (ANN-CA-MCA). While determining spectral-textural indices is quite common for LULC classifications, utilization of these continues indices in LULC change detection and examining these indices at the landscape scale is still in infancy. This country-wide modeling approach provided the first comprehensive projection of future LULC utilizing spectral-textural indices. In this work, we utilized the hybrid ANN-CA-MCA model for predicting LULC in Estonia for 2030; we revealed that the predicted changes in LULC from 2019 to 2030 were similar to the observed changes from 2011 to 2019. The predicted change in the area of artificial surfaces was an increased rate of 1.33% to reach 787.04 km2 in total by 2030. Between 2019 and 2030, the other significant changes were the decrease of 34.57 km2 of forest lands and the increase of agricultural lands by 14.90 km2 and wetlands by 9.31 km2. These findings can develop a proper course of action for long-term spatial planning in Estonia. Therefore, a key policy priority should be to plan for the stable care of forest lands to maintain biodiversity.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10661-022-10266-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8657652", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1095684", 
            "issn": [
              "0167-6369", 
              "1573-2959"
            ], 
            "name": "Environmental Monitoring and Assessment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "194"
          }
        ], 
        "keywords": [
          "hybrid artificial neural network", 
          "artificial neural network", 
          "ANN-CA", 
          "Google Earth Engine (GEE) cloud", 
          "neural network", 
          "change detection", 
          "LULC classification", 
          "LULC change detection", 
          "cellular automata", 
          "modeling approach", 
          "land use/land cover", 
          "cloud", 
          "spatial characteristics", 
          "platform", 
          "network", 
          "automata", 
          "Markov chain analysis", 
          "classification", 
          "MCA model", 
          "work", 
          "urban expansion", 
          "chain analysis", 
          "model", 
          "forest land", 
          "planning", 
          "detection", 
          "future land use/land cover", 
          "land use/land cover change", 
          "land cover", 
          "forest land area", 
          "simulations", 
          "land cover change", 
          "utilization", 
          "land area", 
          "urban land", 
          "LULC changes", 
          "Landsat 5", 
          "data", 
          "landscape scale", 
          "agricultural land", 
          "spatial planning", 
          "stable care", 
          "cover change", 
          "area", 
          "land", 
          "comprehensive projections", 
          "projections", 
          "km2", 
          "priority", 
          "artificial surfaces", 
          "Estonia", 
          "decades", 
          "cover", 
          "observed changes", 
          "wetlands", 
          "biodiversity", 
          "changes", 
          "characteristics", 
          "year 2000", 
          "index", 
          "analysis", 
          "proper course", 
          "expansion", 
          "spatiotemporal transition", 
          "scale", 
          "action", 
          "key policy priority", 
          "policy priorities", 
          "population", 
          "infancy", 
          "rate", 
          "significant changes", 
          "course", 
          "care", 
          "decrease", 
          "increase", 
          "approach", 
          "total", 
          "transition", 
          "surface", 
          "findings"
        ], 
        "name": "Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices", 
        "pagination": "584", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149440886"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10661-022-10266-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35829789"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10661-022-10266-7", 
          "https://app.dimensions.ai/details/publication/pub.1149440886"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_939.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10661-022-10266-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10266-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10266-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10266-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10266-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    252 TRIPLES      21 PREDICATES      126 URIs      103 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10661-022-10266-7 schema:about N149309f082b945aca6b91d205fc18df5
    2 N2b925e77e4f146cc9e1d05273cd90a34
    3 N40d992ba9dd44d10a1a3a44ee0cb1576
    4 N6a0856ce314e492a8570ee0a405a59a4
    5 Nd574a54b3bdf43dd90a1857908852328
    6 anzsrc-for:05
    7 anzsrc-for:0502
    8 schema:author Ncabab277187f4ed88fdfe37df6aba1f7
    9 schema:citation sg:pub.10.1007/s10661-019-7200-2
    10 sg:pub.10.1007/s10708-019-10014-4
    11 sg:pub.10.1007/s10708-020-10274-5
    12 sg:pub.10.1007/s10980-018-0615-2
    13 sg:pub.10.1007/s11273-008-9129-z
    14 sg:pub.10.1007/s11356-019-05127-9
    15 sg:pub.10.1007/s11707-015-0522-7
    16 sg:pub.10.1007/s12145-021-00617-2
    17 sg:pub.10.1007/s12517-017-3012-2
    18 sg:pub.10.1007/s12517-021-06986-8
    19 sg:pub.10.1007/s13762-018-2170-4
    20 sg:pub.10.1007/s40710-015-0062-x
    21 sg:pub.10.1007/s40808-020-00990-9
    22 sg:pub.10.1007/s41324-020-00322-0
    23 sg:pub.10.1007/s42452-021-04351-8
    24 schema:datePublished 2022-07-13
    25 schema:datePublishedReg 2022-07-13
    26 schema:description Over the recent two decades, land use/land cover (LULC) drastically changed in Estonia. Even though the population decreased by 11%, noticeable agricultural and forest land areas were turned into urban land. In this work, we analyzed those LULC changes by mapping the spatial characteristics of LULC and urban expansion in the years 2000–2019 in Estonia. Moreover, using the revealed spatiotemporal transitions of LULC, we simulated LULC and urban expansion for 2030. Landsat 5 and 8 data were used to estimate 147 spectral-textural indices in the Google Earth Engine cloud computing platform. After that, 19 selected indices were used to model LULC changes by applying the hybrid artificial neural network, cellular automata, and Markov chain analysis (ANN-CA-MCA). While determining spectral-textural indices is quite common for LULC classifications, utilization of these continues indices in LULC change detection and examining these indices at the landscape scale is still in infancy. This country-wide modeling approach provided the first comprehensive projection of future LULC utilizing spectral-textural indices. In this work, we utilized the hybrid ANN-CA-MCA model for predicting LULC in Estonia for 2030; we revealed that the predicted changes in LULC from 2019 to 2030 were similar to the observed changes from 2011 to 2019. The predicted change in the area of artificial surfaces was an increased rate of 1.33% to reach 787.04 km2 in total by 2030. Between 2019 and 2030, the other significant changes were the decrease of 34.57 km2 of forest lands and the increase of agricultural lands by 14.90 km2 and wetlands by 9.31 km2. These findings can develop a proper course of action for long-term spatial planning in Estonia. Therefore, a key policy priority should be to plan for the stable care of forest lands to maintain biodiversity.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N3d178590983742b8aad5b6916a180b94
    30 N5fcac9acbcef428991e3492dbbdd55bf
    31 sg:journal.1095684
    32 schema:keywords ANN-CA
    33 Estonia
    34 Google Earth Engine (GEE) cloud
    35 LULC change detection
    36 LULC changes
    37 LULC classification
    38 Landsat 5
    39 MCA model
    40 Markov chain analysis
    41 action
    42 agricultural land
    43 analysis
    44 approach
    45 area
    46 artificial neural network
    47 artificial surfaces
    48 automata
    49 biodiversity
    50 care
    51 cellular automata
    52 chain analysis
    53 change detection
    54 changes
    55 characteristics
    56 classification
    57 cloud
    58 comprehensive projections
    59 course
    60 cover
    61 cover change
    62 data
    63 decades
    64 decrease
    65 detection
    66 expansion
    67 findings
    68 forest land
    69 forest land area
    70 future land use/land cover
    71 hybrid artificial neural network
    72 increase
    73 index
    74 infancy
    75 key policy priority
    76 km2
    77 land
    78 land area
    79 land cover
    80 land cover change
    81 land use/land cover
    82 land use/land cover change
    83 landscape scale
    84 model
    85 modeling approach
    86 network
    87 neural network
    88 observed changes
    89 planning
    90 platform
    91 policy priorities
    92 population
    93 priority
    94 projections
    95 proper course
    96 rate
    97 scale
    98 significant changes
    99 simulations
    100 spatial characteristics
    101 spatial planning
    102 spatiotemporal transition
    103 stable care
    104 surface
    105 total
    106 transition
    107 urban expansion
    108 urban land
    109 utilization
    110 wetlands
    111 work
    112 year 2000
    113 schema:name Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices
    114 schema:pagination 584
    115 schema:productId N347c56d1cd774d6c83a3f2ebbe2a862e
    116 Na145a5507c4347028c2cc41fe67c7055
    117 Ndb645c6bbc494359b8c1a897efaffb62
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149440886
    119 https://doi.org/10.1007/s10661-022-10266-7
    120 schema:sdDatePublished 2022-09-02T16:07
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher Naba478d611a745ff8f3d8e0f1f9f5c29
    123 schema:url https://doi.org/10.1007/s10661-022-10266-7
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N000a56b99f2449c585190610036b6992 schema:affiliation grid-institutes:grid.10939.32
    128 schema:familyName Mozaffaree Pour
    129 schema:givenName Najmeh
    130 rdf:type schema:Person
    131 N149309f082b945aca6b91d205fc18df5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Estonia
    133 rdf:type schema:DefinedTerm
    134 N2b925e77e4f146cc9e1d05273cd90a34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Environmental Monitoring
    136 rdf:type schema:DefinedTerm
    137 N347c56d1cd774d6c83a3f2ebbe2a862e schema:name pubmed_id
    138 schema:value 35829789
    139 rdf:type schema:PropertyValue
    140 N3d178590983742b8aad5b6916a180b94 schema:volumeNumber 194
    141 rdf:type schema:PublicationVolume
    142 N40d992ba9dd44d10a1a3a44ee0cb1576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Conservation of Natural Resources
    144 rdf:type schema:DefinedTerm
    145 N5fcac9acbcef428991e3492dbbdd55bf schema:issueNumber 8
    146 rdf:type schema:PublicationIssue
    147 N6a0856ce314e492a8570ee0a405a59a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Agriculture
    149 rdf:type schema:DefinedTerm
    150 N833d0757840848d8833bf898ab8a5178 rdf:first sg:person.013300251320.97
    151 rdf:rest Nbecd67e742764975b81b226b4a0b753c
    152 Na145a5507c4347028c2cc41fe67c7055 schema:name doi
    153 schema:value 10.1007/s10661-022-10266-7
    154 rdf:type schema:PropertyValue
    155 Naba478d611a745ff8f3d8e0f1f9f5c29 schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 Nbecd67e742764975b81b226b4a0b753c rdf:first sg:person.07476433643.81
    158 rdf:rest Nc6a6381f51f949ec92efa62cb44071f0
    159 Nc6a6381f51f949ec92efa62cb44071f0 rdf:first sg:person.010326134155.16
    160 rdf:rest rdf:nil
    161 Ncabab277187f4ed88fdfe37df6aba1f7 rdf:first N000a56b99f2449c585190610036b6992
    162 rdf:rest N833d0757840848d8833bf898ab8a5178
    163 Nd574a54b3bdf43dd90a1857908852328 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Wetlands
    165 rdf:type schema:DefinedTerm
    166 Ndb645c6bbc494359b8c1a897efaffb62 schema:name dimensions_id
    167 schema:value pub.1149440886
    168 rdf:type schema:PropertyValue
    169 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Environmental Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Environmental Science and Management
    174 rdf:type schema:DefinedTerm
    175 sg:grant.8657652 http://pending.schema.org/fundedItem sg:pub.10.1007/s10661-022-10266-7
    176 rdf:type schema:MonetaryGrant
    177 sg:journal.1095684 schema:issn 0167-6369
    178 1573-2959
    179 schema:name Environmental Monitoring and Assessment
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.010326134155.16 schema:affiliation grid-institutes:grid.10939.32
    183 schema:familyName Oja
    184 schema:givenName Tõnu
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010326134155.16
    186 rdf:type schema:Person
    187 sg:person.013300251320.97 schema:affiliation grid-institutes:grid.7737.4
    188 schema:familyName Karasov
    189 schema:givenName Oleksandr
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013300251320.97
    191 rdf:type schema:Person
    192 sg:person.07476433643.81 schema:affiliation grid-institutes:grid.5373.2
    193 schema:familyName Burdun
    194 schema:givenName Iuliia
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476433643.81
    196 rdf:type schema:Person
    197 sg:pub.10.1007/s10661-019-7200-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111404246
    198 https://doi.org/10.1007/s10661-019-7200-2
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10708-019-10014-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113943720
    201 https://doi.org/10.1007/s10708-019-10014-4
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s10708-020-10274-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130148247
    204 https://doi.org/10.1007/s10708-020-10274-5
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10980-018-0615-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101017557
    207 https://doi.org/10.1007/s10980-018-0615-2
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11273-008-9129-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046072002
    210 https://doi.org/10.1007/s11273-008-9129-z
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s11356-019-05127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114805604
    213 https://doi.org/10.1007/s11356-019-05127-9
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11707-015-0522-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018180365
    216 https://doi.org/10.1007/s11707-015-0522-7
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s12145-021-00617-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137283192
    219 https://doi.org/10.1007/s12145-021-00617-2
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s12517-017-3012-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085991733
    222 https://doi.org/10.1007/s12517-017-3012-2
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s12517-021-06986-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136786876
    225 https://doi.org/10.1007/s12517-021-06986-8
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s13762-018-2170-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113330548
    228 https://doi.org/10.1007/s13762-018-2170-4
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s40710-015-0062-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052112805
    231 https://doi.org/10.1007/s40710-015-0062-x
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s40808-020-00990-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131874203
    234 https://doi.org/10.1007/s40808-020-00990-9
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s41324-020-00322-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125115181
    237 https://doi.org/10.1007/s41324-020-00322-0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s42452-021-04351-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135665618
    240 https://doi.org/10.1007/s42452-021-04351-8
    241 rdf:type schema:CreativeWork
    242 grid-institutes:grid.10939.32 schema:alternateName Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia
    243 schema:name Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia
    244 rdf:type schema:Organization
    245 grid-institutes:grid.5373.2 schema:alternateName Department of Built Environment, Aalto University, PO Box 14100, 00076, Espoo, Finland
    246 schema:name Department of Built Environment, Aalto University, PO Box 14100, 00076, Espoo, Finland
    247 Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia
    248 rdf:type schema:Organization
    249 grid-institutes:grid.7737.4 schema:alternateName Digital Geography Lab, Department of Geosciences and Geography, Faculty of Sciences, University of Helsinki, (Gustaf Hällströmin katu 2), PO Box 64, 00014, Helsinki, Finland
    250 schema:name Department of Geography, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise 46, 50410, Tartu, Estonia
    251 Digital Geography Lab, Department of Geosciences and Geography, Faculty of Sciences, University of Helsinki, (Gustaf Hällströmin katu 2), PO Box 64, 00014, Helsinki, Finland
    252 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...