Phytoplankton growth and community shift over a short-term high-CO2 simulation experiment from the southwestern shelf of India, Eastern Arabian Sea ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-12

AUTHORS

Diksha Sharma, Haimanti Biswas, Saumya Silori, Debasmita Bandyopadhyay, Aziz ur Rahman Shaik

ABSTRACT

The southwestern shelf water of India (eastern Arabian Sea) experiences high seasonality. This area is one of the understudied regions in terms of phytoplankton response to the projected ocean acidification, particularly, during the summer monsoon when phytoplankton abundance is high. Here we present the results of a short-term simulated ocean acidification experiment (ambient CO2 424 µatm; high CO2, 843, 1138 µatm) on the natural phytoplankton assemblages conducted onboard (R. V. Sindhu Sadhana) during the summer monsoon (Aug 2017). Among the dissolved inorganic nutrients, dissolved silicate (DSi) and nitrate + nitrite levels were quite low (< 2 µM). Phytoplankton biomass did not show any net enhancement after the incubation in any treatment. Both marker pigment analysis and microscopy revealed the dominance of diatoms in the phytoplankton community, and a significant restructuring was noticed over the experimental period. Divinyl chlorophylla (DVChla) containing picocyanobacteria and 19'-hexanoyloxyfucoxanthin (19′HF) containing prymnesiophytes did not show any noticeable change in response to CO2 enrichment. A CO2-induced positive growth response was noticed in some diatoms (Guinardia flaccida, Cylindrotheca closterium, and Pseudo-nitzschia sp.) and dinoflagellates (Protoperidinium sp. and Peridinium sp.) indicating their efficiency to quickly acclimatize at elevated CO2 levels. This is important to note that the positive growth response of toxigenic pennate diatoms like Pseudo-nitzschia as well as a few dinoflagellates at elevated CO2 levels can be expected in the future-ocean scenario. The proliferation of such non-palatable phytoplankton may impact grazing, the food chain, and carbon cycling in this region. More... »

PAGES

581

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-022-10214-5

DOI

http://dx.doi.org/10.1007/s10661-022-10214-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149412460

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35821440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diatoms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dinoflagellida", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "India", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phytoplankton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seawater", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bharathidasan University, Tiruchirappalli, Tamil Nadu, India", 
          "id": "http://www.grid.ac/institutes/grid.411678.d", 
          "name": [
            "Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India", 
            "Bharathidasan University, Tiruchirappalli, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Diksha", 
        "id": "sg:person.016676260637.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016676260637.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India", 
          "id": "http://www.grid.ac/institutes/grid.469887.c", 
          "name": [
            "Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India", 
            "Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biswas", 
        "givenName": "Haimanti", 
        "id": "sg:person.012436443745.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012436443745.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India", 
          "id": "http://www.grid.ac/institutes/grid.469887.c", 
          "name": [
            "Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India", 
            "Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silori", 
        "givenName": "Saumya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Coastal Research, 600100, Chennai, Tamil Nadu, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Center for Coastal Research, 600100, Chennai, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bandyopadhyay", 
        "givenName": "Debasmita", 
        "id": "sg:person.01277351463.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277351463.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India", 
          "id": "http://www.grid.ac/institutes/grid.436330.1", 
          "name": [
            "Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaik", 
        "givenName": "Aziz ur Rahman", 
        "id": "sg:person.012160763733.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160763733.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate2722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000654317", 
          "https://doi.org/10.1038/nclimate2722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021771713", 
          "https://doi.org/10.1038/ngeo1441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10750-021-04672-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140104391", 
          "https://doi.org/10.1007/s10750-021-04672-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-011-9632-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043095858", 
          "https://doi.org/10.1007/s11120-011-9632-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-008-9193-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039286161", 
          "https://doi.org/10.1007/s10533-008-9193-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-44587-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116115315", 
          "https://doi.org/10.1038/s41598-019-44587-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41559-017-0084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084130154", 
          "https://doi.org/10.1038/s41559-017-0084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-55039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123229257", 
          "https://doi.org/10.1038/s41598-019-55039-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-021-17141-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1142247893", 
          "https://doi.org/10.1007/s11356-021-17141-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10531-011-0209-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048380297", 
          "https://doi.org/10.1007/s10531-011-0209-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00391714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016314703", 
          "https://doi.org/10.1007/bf00391714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-12", 
    "datePublishedReg": "2022-07-12", 
    "description": "The southwestern shelf water of India (eastern Arabian Sea) experiences high seasonality. This area is one of the understudied regions in terms of phytoplankton response to the projected ocean acidification, particularly, during the summer monsoon when phytoplankton abundance is high. Here we present the results of a short-term simulated ocean acidification experiment (ambient CO2 424 \u00b5atm; high CO2, 843, 1138 \u00b5atm) on the natural phytoplankton assemblages conducted onboard (R. V. Sindhu Sadhana) during the summer monsoon (Aug 2017). Among the dissolved inorganic nutrients, dissolved silicate (DSi) and nitrate\u2009+\u2009nitrite levels were quite low (<\u20092\u00a0\u00b5M). Phytoplankton biomass did not show any net enhancement after the incubation in any treatment. Both marker pigment analysis and microscopy revealed the dominance of diatoms in the phytoplankton community, and a significant restructuring was noticed over the experimental period. Divinyl chlorophylla (DVChla) containing picocyanobacteria and 19'-hexanoyloxyfucoxanthin (19\u2032HF) containing prymnesiophytes did not show any noticeable change in response to CO2 enrichment. A CO2-induced positive growth response was noticed in some diatoms (Guinardia flaccida, Cylindrotheca closterium, and Pseudo-nitzschia sp.) and dinoflagellates (Protoperidinium sp. and Peridinium sp.) indicating their efficiency to quickly acclimatize at elevated CO2 levels. This is important to note that the positive growth response of toxigenic pennate diatoms like Pseudo-nitzschia as well as a few dinoflagellates at elevated CO2 levels can be expected in the future-ocean scenario. The proliferation of such non-palatable phytoplankton may impact grazing, the food chain, and carbon cycling in this region.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10661-022-10214-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "194"
      }
    ], 
    "keywords": [
      "elevated CO2 levels", 
      "positive growth response", 
      "growth response", 
      "natural phytoplankton assemblages", 
      "future ocean scenarios", 
      "dominance of diatoms", 
      "CO2 levels", 
      "ocean acidification experiments", 
      "CO2 enrichment", 
      "Pseudo-nitzschia", 
      "pennate diatoms", 
      "phytoplankton community", 
      "ocean acidification", 
      "phytoplankton assemblage", 
      "pigment analysis", 
      "phytoplankton abundance", 
      "phytoplankton response", 
      "carbon cycling", 
      "diatoms", 
      "phytoplankton biomass", 
      "food chain", 
      "inorganic nutrients", 
      "phytoplankton growth", 
      "understudied region", 
      "acidification experiments", 
      "dinoflagellates", 
      "high seasonality", 
      "picocyanobacteria", 
      "prymnesiophytes", 
      "phytoplankton", 
      "abundance", 
      "shelf waters", 
      "assemblages", 
      "grazing", 
      "eastern Arabian Sea", 
      "nutrients", 
      "biomass", 
      "response", 
      "proliferation", 
      "chlorophylla", 
      "community", 
      "acidification", 
      "Arabian Sea", 
      "region", 
      "enrichment", 
      "seasonality", 
      "growth", 
      "dominance", 
      "levels", 
      "cycling", 
      "incubation", 
      "Sea", 
      "southwestern shelf", 
      "experimental period", 
      "experiments", 
      "microscopy", 
      "chain", 
      "significant restructuring", 
      "noticeable changes", 
      "shelf", 
      "changes", 
      "analysis", 
      "water", 
      "India", 
      "area", 
      "monsoon", 
      "results", 
      "treatment", 
      "net enhancement", 
      "period", 
      "efficiency", 
      "nitrite levels", 
      "enhancement", 
      "scenarios", 
      "summer monsoon", 
      "restructuring", 
      "terms", 
      "silicate", 
      "simulation experiments"
    ], 
    "name": "Phytoplankton growth and community shift over a short-term high-CO2 simulation experiment from the southwestern shelf of India, Eastern Arabian Sea (summer monsoon)", 
    "pagination": "581", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149412460"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-022-10214-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35821440"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-022-10214-5", 
      "https://app.dimensions.ai/details/publication/pub.1149412460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10661-022-10214-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10214-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10214-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10214-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-022-10214-5'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      123 URIs      104 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-022-10214-5 schema:about N24fa2aaa2a63429c9bd7b9f5193e91d2
2 N7d9e207d74ab48868a5e66dc57a829e9
3 N7e58fa8a4fe340c68aeabac740f96c0e
4 N98123588f3c14427b612e73f7a06ccb6
5 N9cc0e1050abb49929adf2e0c8fd4265f
6 Nb58b0bb983cd44a6974da2c1f06b8bbd
7 Nd0e8c282418f448a9b01c6c0c2a6616c
8 Nfd58e21e0ba44c208b8a09e8e45b69b9
9 anzsrc-for:04
10 anzsrc-for:0405
11 schema:author N4d5cd3a40d2e481d9f2678890c73d9d7
12 schema:citation sg:pub.10.1007/bf00391714
13 sg:pub.10.1007/s10531-011-0209-7
14 sg:pub.10.1007/s10533-008-9193-8
15 sg:pub.10.1007/s10750-021-04672-0
16 sg:pub.10.1007/s11120-011-9632-6
17 sg:pub.10.1007/s11356-021-17141-x
18 sg:pub.10.1038/nclimate2722
19 sg:pub.10.1038/ngeo1441
20 sg:pub.10.1038/s41559-017-0084
21 sg:pub.10.1038/s41598-019-44587-4
22 sg:pub.10.1038/s41598-019-55039-4
23 schema:datePublished 2022-07-12
24 schema:datePublishedReg 2022-07-12
25 schema:description The southwestern shelf water of India (eastern Arabian Sea) experiences high seasonality. This area is one of the understudied regions in terms of phytoplankton response to the projected ocean acidification, particularly, during the summer monsoon when phytoplankton abundance is high. Here we present the results of a short-term simulated ocean acidification experiment (ambient CO2 424 µatm; high CO2, 843, 1138 µatm) on the natural phytoplankton assemblages conducted onboard (R. V. Sindhu Sadhana) during the summer monsoon (Aug 2017). Among the dissolved inorganic nutrients, dissolved silicate (DSi) and nitrate + nitrite levels were quite low (< 2 µM). Phytoplankton biomass did not show any net enhancement after the incubation in any treatment. Both marker pigment analysis and microscopy revealed the dominance of diatoms in the phytoplankton community, and a significant restructuring was noticed over the experimental period. Divinyl chlorophylla (DVChla) containing picocyanobacteria and 19'-hexanoyloxyfucoxanthin (19′HF) containing prymnesiophytes did not show any noticeable change in response to CO2 enrichment. A CO2-induced positive growth response was noticed in some diatoms (Guinardia flaccida, Cylindrotheca closterium, and Pseudo-nitzschia sp.) and dinoflagellates (Protoperidinium sp. and Peridinium sp.) indicating their efficiency to quickly acclimatize at elevated CO2 levels. This is important to note that the positive growth response of toxigenic pennate diatoms like Pseudo-nitzschia as well as a few dinoflagellates at elevated CO2 levels can be expected in the future-ocean scenario. The proliferation of such non-palatable phytoplankton may impact grazing, the food chain, and carbon cycling in this region.
26 schema:genre article
27 schema:isAccessibleForFree false
28 schema:isPartOf Nb2a2bad484c24897bf604e1c95ae52ff
29 Ne0d51863a7f34b0aa237b07dcd11850f
30 sg:journal.1095684
31 schema:keywords Arabian Sea
32 CO2 enrichment
33 CO2 levels
34 India
35 Pseudo-nitzschia
36 Sea
37 abundance
38 acidification
39 acidification experiments
40 analysis
41 area
42 assemblages
43 biomass
44 carbon cycling
45 chain
46 changes
47 chlorophylla
48 community
49 cycling
50 diatoms
51 dinoflagellates
52 dominance
53 dominance of diatoms
54 eastern Arabian Sea
55 efficiency
56 elevated CO2 levels
57 enhancement
58 enrichment
59 experimental period
60 experiments
61 food chain
62 future ocean scenarios
63 grazing
64 growth
65 growth response
66 high seasonality
67 incubation
68 inorganic nutrients
69 levels
70 microscopy
71 monsoon
72 natural phytoplankton assemblages
73 net enhancement
74 nitrite levels
75 noticeable changes
76 nutrients
77 ocean acidification
78 ocean acidification experiments
79 pennate diatoms
80 period
81 phytoplankton
82 phytoplankton abundance
83 phytoplankton assemblage
84 phytoplankton biomass
85 phytoplankton community
86 phytoplankton growth
87 phytoplankton response
88 picocyanobacteria
89 pigment analysis
90 positive growth response
91 proliferation
92 prymnesiophytes
93 region
94 response
95 restructuring
96 results
97 scenarios
98 seasonality
99 shelf
100 shelf waters
101 significant restructuring
102 silicate
103 simulation experiments
104 southwestern shelf
105 summer monsoon
106 terms
107 treatment
108 understudied region
109 water
110 schema:name Phytoplankton growth and community shift over a short-term high-CO2 simulation experiment from the southwestern shelf of India, Eastern Arabian Sea (summer monsoon)
111 schema:pagination 581
112 schema:productId N0c9b698671494047911c2a30f183163c
113 N85a97c084e6f48a0acba788891baace5
114 Nbe8b6bbca208409f91b25fb20f1ab35f
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149412460
116 https://doi.org/10.1007/s10661-022-10214-5
117 schema:sdDatePublished 2022-12-01T06:44
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N1731e4a79d584887aead0f39886c2237
120 schema:url https://doi.org/10.1007/s10661-022-10214-5
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N022ffeb40e1546f190d30c01bc058655 rdf:first sg:person.012436443745.32
125 rdf:rest Nb5e3ea7eeac84832b3958840e12818f3
126 N0c9b698671494047911c2a30f183163c schema:name pubmed_id
127 schema:value 35821440
128 rdf:type schema:PropertyValue
129 N1731e4a79d584887aead0f39886c2237 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N24fa2aaa2a63429c9bd7b9f5193e91d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Phytoplankton
133 rdf:type schema:DefinedTerm
134 N3770ccacaae0404294975bae163231a0 rdf:first sg:person.01277351463.47
135 rdf:rest Nac1e175cc6d443849a0366c4266bec3d
136 N4d5cd3a40d2e481d9f2678890c73d9d7 rdf:first sg:person.016676260637.36
137 rdf:rest N022ffeb40e1546f190d30c01bc058655
138 N7d9e207d74ab48868a5e66dc57a829e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Seawater
140 rdf:type schema:DefinedTerm
141 N7e58fa8a4fe340c68aeabac740f96c0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Diatoms
143 rdf:type schema:DefinedTerm
144 N85a97c084e6f48a0acba788891baace5 schema:name doi
145 schema:value 10.1007/s10661-022-10214-5
146 rdf:type schema:PropertyValue
147 N98123588f3c14427b612e73f7a06ccb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Environmental Monitoring
149 rdf:type schema:DefinedTerm
150 N9cc0e1050abb49929adf2e0c8fd4265f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Carbon Dioxide
152 rdf:type schema:DefinedTerm
153 Nac1e175cc6d443849a0366c4266bec3d rdf:first sg:person.012160763733.06
154 rdf:rest rdf:nil
155 Nae2a64c04ed448f6b9c60c7463a2ad6b schema:affiliation grid-institutes:grid.469887.c
156 schema:familyName Silori
157 schema:givenName Saumya
158 rdf:type schema:Person
159 Nb2a2bad484c24897bf604e1c95ae52ff schema:issueNumber 8
160 rdf:type schema:PublicationIssue
161 Nb58b0bb983cd44a6974da2c1f06b8bbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Hydrogen-Ion Concentration
163 rdf:type schema:DefinedTerm
164 Nb5e3ea7eeac84832b3958840e12818f3 rdf:first Nae2a64c04ed448f6b9c60c7463a2ad6b
165 rdf:rest N3770ccacaae0404294975bae163231a0
166 Nbe8b6bbca208409f91b25fb20f1ab35f schema:name dimensions_id
167 schema:value pub.1149412460
168 rdf:type schema:PropertyValue
169 Nd0e8c282418f448a9b01c6c0c2a6616c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Dinoflagellida
171 rdf:type schema:DefinedTerm
172 Ne0d51863a7f34b0aa237b07dcd11850f schema:volumeNumber 194
173 rdf:type schema:PublicationVolume
174 Nfd58e21e0ba44c208b8a09e8e45b69b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name India
176 rdf:type schema:DefinedTerm
177 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
178 schema:name Earth Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
181 schema:name Oceanography
182 rdf:type schema:DefinedTerm
183 sg:journal.1095684 schema:issn 0167-6369
184 1573-2959
185 schema:name Environmental Monitoring and Assessment
186 schema:publisher Springer Nature
187 rdf:type schema:Periodical
188 sg:person.012160763733.06 schema:affiliation grid-institutes:grid.436330.1
189 schema:familyName Shaik
190 schema:givenName Aziz ur Rahman
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160763733.06
192 rdf:type schema:Person
193 sg:person.012436443745.32 schema:affiliation grid-institutes:grid.469887.c
194 schema:familyName Biswas
195 schema:givenName Haimanti
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012436443745.32
197 rdf:type schema:Person
198 sg:person.01277351463.47 schema:affiliation grid-institutes:None
199 schema:familyName Bandyopadhyay
200 schema:givenName Debasmita
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277351463.47
202 rdf:type schema:Person
203 sg:person.016676260637.36 schema:affiliation grid-institutes:grid.411678.d
204 schema:familyName Sharma
205 schema:givenName Diksha
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016676260637.36
207 rdf:type schema:Person
208 sg:pub.10.1007/bf00391714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016314703
209 https://doi.org/10.1007/bf00391714
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s10531-011-0209-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048380297
212 https://doi.org/10.1007/s10531-011-0209-7
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s10533-008-9193-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039286161
215 https://doi.org/10.1007/s10533-008-9193-8
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s10750-021-04672-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140104391
218 https://doi.org/10.1007/s10750-021-04672-0
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s11120-011-9632-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043095858
221 https://doi.org/10.1007/s11120-011-9632-6
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s11356-021-17141-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1142247893
224 https://doi.org/10.1007/s11356-021-17141-x
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nclimate2722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000654317
227 https://doi.org/10.1038/nclimate2722
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/ngeo1441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771713
230 https://doi.org/10.1038/ngeo1441
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/s41559-017-0084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130154
233 https://doi.org/10.1038/s41559-017-0084
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/s41598-019-44587-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116115315
236 https://doi.org/10.1038/s41598-019-44587-4
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/s41598-019-55039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123229257
239 https://doi.org/10.1038/s41598-019-55039-4
240 rdf:type schema:CreativeWork
241 grid-institutes:None schema:alternateName National Center for Coastal Research, 600100, Chennai, Tamil Nadu, India
242 schema:name National Center for Coastal Research, 600100, Chennai, Tamil Nadu, India
243 rdf:type schema:Organization
244 grid-institutes:grid.411678.d schema:alternateName Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
245 schema:name Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
246 Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India
247 rdf:type schema:Organization
248 grid-institutes:grid.436330.1 schema:alternateName Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India
249 schema:name Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India
250 rdf:type schema:Organization
251 grid-institutes:grid.469887.c schema:alternateName Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
252 schema:name Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
253 Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, 403 004, Goa, India
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...