Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-12-01

AUTHORS

Asfa Rizvi, Bilal Ahmed, Almas Zaidi, Mohd. Saghir Khan

ABSTRACT

Heavy metals discharge at an unrestrained rate from various industries into the environment pose serious human health problems. Considering this, the present study aimed at exploring the metal biosorbing potentials of bacterial strains recovered from polluted soils. The bacterial strains (CPSB1, BM2 and CAZ3) belonging to genera Pseudomonas, Bacillus and Azotobacter expressing multi-metal tolerance ability were identified to species level as P. aeruginosa, B. subtilis and A. chroococcum, respectively, by 16S rRNA partial gene sequence analysis. The biosorption of cadmium, chromium, copper, nickel, lead and zinc by three dead bacterial genera were studied as a function of metal concentration, variable pH of the medium and reaction (contact) time. The three bacterial strains exhibited a tremendous metal removal ability which continued even at the highest tested concentration of some metals. Later, a decline in the percentage of biosorbed metals was recorded as the metal concentration was increased with the simultaneous generation of a driving force to overcome mass transfer resistance for movement of metal ions between the solution and the surface of adsorbent. Among test bacteria, B. subtilis biosorbed a maximum of 96% chromium at 25 μg mL−1 while the maximum percentage (91%) of biosorbed metals recorded at 400 μg Cd mL−1 was observed for P. aeruginosa. The sorption of metal ions by dead biomass of three bacterial genera at optimum conditions followed the order—(i) B. subtilis BM2: Pb > Cu > Ni > Cd > Cr, (ii) A. chroococcum CAZ3: Cr > Cd > Cu > Ni > Pb and (iii) P. aeruginosa CPSB1: Cd > Cr > Ni > Cu > Pb > Zn. It was found that the optimum pH for metal adsorption ranged between pH 8 and 9 which, however, declined substantially at pH 5.0 for all three bacterial strains. In general, the biosorption of Cd, Cr, Cu, Ni and Pb by B. subtilis and A. chroococcum and such metals along with Zn by P. aeruginosa occurred maximally up to 60 min of bacterial growth. The adsorption data with regard to five metals provide an outstanding fit to the Langmuir and Freundlich isotherms. The biosorptive ability of three bacterial genera correlated strongly (r2 > 0.9) with each metal. The bacteria belonging to two Gram-negative genera Pseudomonas (P. aeruginosa) and Azotobacter (A. chroococcum) and one Gram-positive genus Bacillus (B. subtilis) demonstrated exceptional metal removal efficiency and, hence, provides a comprehensive understanding of metal-bacteria sorption process which in effect paves the way for detoxifying/removing metals from contaminated environment. More... »

PAGES

801

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-020-08758-5

DOI

http://dx.doi.org/10.1007/s10661-020-08758-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1133010430

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33263175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adsorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodegradation, Environmental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadmium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals, Heavy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India", 
          "id": "http://www.grid.ac/institutes/grid.411340.3", 
          "name": [
            "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizvi", 
        "givenName": "Asfa", 
        "id": "sg:person.011775424645.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011775424645.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India", 
          "id": "http://www.grid.ac/institutes/grid.411340.3", 
          "name": [
            "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmed", 
        "givenName": "Bilal", 
        "id": "sg:person.016366274214.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366274214.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India", 
          "id": "http://www.grid.ac/institutes/grid.411340.3", 
          "name": [
            "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaidi", 
        "givenName": "Almas", 
        "id": "sg:person.012416131313.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012416131313.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India", 
          "id": "http://www.grid.ac/institutes/grid.411340.3", 
          "name": [
            "Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Mohd. Saghir", 
        "id": "sg:person.016677232503.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677232503.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/j.bjm.2016.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026413630", 
          "https://doi.org/10.1016/j.bjm.2016.09.007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-003-1843-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044406636", 
          "https://doi.org/10.1007/s00216-003-1843-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037386615", 
          "https://doi.org/10.1038/srep31575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-019-02023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112096407", 
          "https://doi.org/10.1007/s10646-019-02023-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-17765-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100172290", 
          "https://doi.org/10.1038/s41598-017-17765-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-31660-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106545382", 
          "https://doi.org/10.1038/s41598-018-31660-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03327628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021826519", 
          "https://doi.org/10.1007/bf03327628"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-12-01", 
    "datePublishedReg": "2020-12-01", 
    "description": "Heavy metals discharge at an unrestrained rate from various industries into the environment pose serious human health problems. Considering this, the present study aimed at exploring the metal biosorbing potentials of bacterial strains recovered from polluted soils. The bacterial strains (CPSB1, BM2 and CAZ3) belonging to genera Pseudomonas, Bacillus and Azotobacter expressing multi-metal tolerance ability were identified to species level as P. aeruginosa, B. subtilis and A. chroococcum, respectively, by 16S rRNA partial gene sequence analysis. The biosorption of cadmium, chromium, copper, nickel, lead and zinc by three dead bacterial genera were studied as a function of metal concentration, variable pH of the medium and reaction (contact) time. The three bacterial strains exhibited a tremendous metal removal ability which continued even at the highest tested concentration of some metals. Later, a decline in the percentage of biosorbed metals was recorded as the metal concentration was increased with the simultaneous generation of a driving force to overcome mass transfer resistance for movement of metal ions between the solution and the surface of adsorbent. Among test bacteria, B. subtilis biosorbed a maximum of 96% chromium at 25\u00a0\u03bcg\u00a0mL\u22121 while the maximum percentage (91%) of biosorbed metals recorded at 400\u00a0\u03bcg Cd\u00a0mL\u22121 was observed for P. aeruginosa. The sorption of metal ions by dead biomass of three bacterial genera at optimum conditions followed the order\u2014(i) B. subtilis BM2: Pb > Cu > Ni > Cd > Cr, (ii) A. chroococcum CAZ3: Cr > Cd > Cu > Ni > Pb and (iii) P. aeruginosa CPSB1: Cd > Cr > Ni > Cu > Pb > Zn. It was found that the optimum pH for metal adsorption ranged between pH\u00a08 and 9 which, however, declined substantially at pH\u00a05.0 for all three bacterial strains. In general, the biosorption of Cd, Cr, Cu, Ni and Pb by B. subtilis and A. chroococcum and such metals along with Zn by P. aeruginosa occurred maximally up to 60\u00a0min of bacterial growth. The adsorption data with regard to five metals provide an outstanding fit to the Langmuir and Freundlich isotherms. The biosorptive ability of three bacterial genera correlated strongly (r2\u2009>\u20090.9) with each metal. The bacteria belonging to two Gram-negative genera Pseudomonas (P. aeruginosa) and Azotobacter (A. chroococcum) and one Gram-positive genus Bacillus (B. subtilis) demonstrated exceptional metal removal efficiency and, hence, provides a comprehensive understanding of metal-bacteria sorption process which in effect paves the way for detoxifying/removing metals from contaminated environment.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10661-020-08758-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "192"
      }
    ], 
    "keywords": [
      "mass transfer resistance", 
      "metal removal efficiency", 
      "surface of adsorbent", 
      "removal efficiency", 
      "transfer resistance", 
      "metal removal ability", 
      "removal ability", 
      "biosorption of cadmium", 
      "optimum conditions", 
      "adsorption data", 
      "Freundlich isotherm", 
      "metal adsorption", 
      "sorption process", 
      "bacterial biosorbent", 
      "efficient metal", 
      "heavy metal discharge", 
      "metal discharge", 
      "biosorption", 
      "simultaneous generation", 
      "metals", 
      "Ni", 
      "biosorption of Cd", 
      "such metals", 
      "dead biomass", 
      "biosorptive ability", 
      "chromium", 
      "metal ions", 
      "metal concentrations", 
      "variable pH", 
      "adsorbent", 
      "maximum percentage", 
      "Cr", 
      "heavy metals", 
      "reaction time", 
      "Langmuir", 
      "biosorbent", 
      "tolerance ability", 
      "nickel", 
      "adsorption", 
      "isotherms", 
      "surface", 
      "sorption", 
      "biomass", 
      "copper", 
      "force", 
      "efficiency", 
      "dry biomass", 
      "strains", 
      "polluted soil", 
      "ions", 
      "Zn", 
      "outstanding fit", 
      "industry", 
      "concentration", 
      "pH", 
      "solution", 
      "optimum pH", 
      "Cu", 
      "comprehensive understanding", 
      "discharge", 
      "environment", 
      "generation", 
      "resistance", 
      "Cd", 
      "process", 
      "contaminated environments", 
      "human health problems", 
      "conditions", 
      "order", 
      "Pb", 
      "soil", 
      "maximum", 
      "problem", 
      "ability", 
      "lead", 
      "potential", 
      "time", 
      "min", 
      "effect", 
      "rate", 
      "analysis", 
      "medium", 
      "bacterial growth", 
      "serious human health problems", 
      "cadmium", 
      "percentage", 
      "present study", 
      "bacterial strains", 
      "movement", 
      "growth", 
      "fit", 
      "way", 
      "strategies", 
      "function", 
      "data", 
      "study", 
      "regard", 
      "genus Pseudomonas", 
      "bacteria", 
      "levels", 
      "test bacteria", 
      "BM2", 
      "understanding", 
      "B. subtilis", 
      "Pseudomonas", 
      "P. aeruginosa", 
      "aeruginosa", 
      "subtilis", 
      "bacterial genera", 
      "Azotobacter", 
      "chroococcum", 
      "genus Bacillus", 
      "decline", 
      "bacilli", 
      "A. chroococcum", 
      "rRNA partial gene sequence analysis", 
      "partial gene sequence analysis", 
      "gene sequence analysis", 
      "health problems", 
      "species level", 
      "sequence analysis", 
      "genus"
    ], 
    "name": "Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy", 
    "pagination": "801", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1133010430"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-020-08758-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33263175"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-020-08758-5", 
      "https://app.dimensions.ai/details/publication/pub.1133010430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_867.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10661-020-08758-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-020-08758-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-020-08758-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-020-08758-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-020-08758-5'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      162 URIs      147 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-020-08758-5 schema:about N26d03bb4b00e452aaebd3f77c8b4ce32
2 N4b26b0d8832d49fe8c44e2451063d90e
3 N4c9ed45c9de94920a8328b2a9fcab59d
4 N5861ceb127ec4e9691e284dbce835108
5 N6cd3751bfed84027a1a1116bb697dd3e
6 Nc09f75d49ac046498a1af7d02e253ee1
7 Nd5b3cc10d396429097bddf9f9f0747a3
8 Nfa55e68a69b44b6aa9da4372f51d4b53
9 anzsrc-for:03
10 anzsrc-for:0302
11 schema:author N8490d5879abb42a4a6b1680fad7a6f3d
12 schema:citation sg:pub.10.1007/bf03327628
13 sg:pub.10.1007/s00216-003-1843-z
14 sg:pub.10.1007/s10646-019-02023-3
15 sg:pub.10.1016/j.bjm.2016.09.007
16 sg:pub.10.1038/s41598-017-17765-5
17 sg:pub.10.1038/s41598-018-31660-7
18 sg:pub.10.1038/srep31575
19 schema:datePublished 2020-12-01
20 schema:datePublishedReg 2020-12-01
21 schema:description Heavy metals discharge at an unrestrained rate from various industries into the environment pose serious human health problems. Considering this, the present study aimed at exploring the metal biosorbing potentials of bacterial strains recovered from polluted soils. The bacterial strains (CPSB1, BM2 and CAZ3) belonging to genera Pseudomonas, Bacillus and Azotobacter expressing multi-metal tolerance ability were identified to species level as P. aeruginosa, B. subtilis and A. chroococcum, respectively, by 16S rRNA partial gene sequence analysis. The biosorption of cadmium, chromium, copper, nickel, lead and zinc by three dead bacterial genera were studied as a function of metal concentration, variable pH of the medium and reaction (contact) time. The three bacterial strains exhibited a tremendous metal removal ability which continued even at the highest tested concentration of some metals. Later, a decline in the percentage of biosorbed metals was recorded as the metal concentration was increased with the simultaneous generation of a driving force to overcome mass transfer resistance for movement of metal ions between the solution and the surface of adsorbent. Among test bacteria, B. subtilis biosorbed a maximum of 96% chromium at 25 μg mL−1 while the maximum percentage (91%) of biosorbed metals recorded at 400 μg Cd mL−1 was observed for P. aeruginosa. The sorption of metal ions by dead biomass of three bacterial genera at optimum conditions followed the order—(i) B. subtilis BM2: Pb > Cu > Ni > Cd > Cr, (ii) A. chroococcum CAZ3: Cr > Cd > Cu > Ni > Pb and (iii) P. aeruginosa CPSB1: Cd > Cr > Ni > Cu > Pb > Zn. It was found that the optimum pH for metal adsorption ranged between pH 8 and 9 which, however, declined substantially at pH 5.0 for all three bacterial strains. In general, the biosorption of Cd, Cr, Cu, Ni and Pb by B. subtilis and A. chroococcum and such metals along with Zn by P. aeruginosa occurred maximally up to 60 min of bacterial growth. The adsorption data with regard to five metals provide an outstanding fit to the Langmuir and Freundlich isotherms. The biosorptive ability of three bacterial genera correlated strongly (r2 > 0.9) with each metal. The bacteria belonging to two Gram-negative genera Pseudomonas (P. aeruginosa) and Azotobacter (A. chroococcum) and one Gram-positive genus Bacillus (B. subtilis) demonstrated exceptional metal removal efficiency and, hence, provides a comprehensive understanding of metal-bacteria sorption process which in effect paves the way for detoxifying/removing metals from contaminated environment.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N9a5a5f8ace7a4ff28b8a7c214e3a69e5
25 Ncd5b0694e64147099fc6534920028387
26 sg:journal.1095684
27 schema:keywords A. chroococcum
28 Azotobacter
29 B. subtilis
30 BM2
31 Cd
32 Cr
33 Cu
34 Freundlich isotherm
35 Langmuir
36 Ni
37 P. aeruginosa
38 Pb
39 Pseudomonas
40 Zn
41 ability
42 adsorbent
43 adsorption
44 adsorption data
45 aeruginosa
46 analysis
47 bacilli
48 bacteria
49 bacterial biosorbent
50 bacterial genera
51 bacterial growth
52 bacterial strains
53 biomass
54 biosorbent
55 biosorption
56 biosorption of Cd
57 biosorption of cadmium
58 biosorptive ability
59 cadmium
60 chromium
61 chroococcum
62 comprehensive understanding
63 concentration
64 conditions
65 contaminated environments
66 copper
67 data
68 dead biomass
69 decline
70 discharge
71 dry biomass
72 effect
73 efficiency
74 efficient metal
75 environment
76 fit
77 force
78 function
79 gene sequence analysis
80 generation
81 genus
82 genus Bacillus
83 genus Pseudomonas
84 growth
85 health problems
86 heavy metal discharge
87 heavy metals
88 human health problems
89 industry
90 ions
91 isotherms
92 lead
93 levels
94 mass transfer resistance
95 maximum
96 maximum percentage
97 medium
98 metal adsorption
99 metal concentrations
100 metal discharge
101 metal ions
102 metal removal ability
103 metal removal efficiency
104 metals
105 min
106 movement
107 nickel
108 optimum conditions
109 optimum pH
110 order
111 outstanding fit
112 pH
113 partial gene sequence analysis
114 percentage
115 polluted soil
116 potential
117 present study
118 problem
119 process
120 rRNA partial gene sequence analysis
121 rate
122 reaction time
123 regard
124 removal ability
125 removal efficiency
126 resistance
127 sequence analysis
128 serious human health problems
129 simultaneous generation
130 soil
131 solution
132 sorption
133 sorption process
134 species level
135 strains
136 strategies
137 study
138 subtilis
139 such metals
140 surface
141 surface of adsorbent
142 test bacteria
143 time
144 tolerance ability
145 transfer resistance
146 understanding
147 variable pH
148 way
149 schema:name Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy
150 schema:pagination 801
151 schema:productId N0b5be67bfaf744249a541b8e55756bae
152 N142825407a5e49ed9382cb5801b801c4
153 Na968bd427691412fbb734a929afd1408
154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133010430
155 https://doi.org/10.1007/s10661-020-08758-5
156 schema:sdDatePublished 2022-11-24T21:07
157 schema:sdLicense https://scigraph.springernature.com/explorer/license/
158 schema:sdPublisher Nc7d39a38e14949ae9395133a40d7eb0a
159 schema:url https://doi.org/10.1007/s10661-020-08758-5
160 sgo:license sg:explorer/license/
161 sgo:sdDataset articles
162 rdf:type schema:ScholarlyArticle
163 N0b5be67bfaf744249a541b8e55756bae schema:name pubmed_id
164 schema:value 33263175
165 rdf:type schema:PropertyValue
166 N142825407a5e49ed9382cb5801b801c4 schema:name doi
167 schema:value 10.1007/s10661-020-08758-5
168 rdf:type schema:PropertyValue
169 N26d03bb4b00e452aaebd3f77c8b4ce32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Metals, Heavy
171 rdf:type schema:DefinedTerm
172 N3e1c254ae20542ed83728ae505686de0 rdf:first sg:person.012416131313.43
173 rdf:rest Nf1c89ae94b7e47b887bf526e9e34e432
174 N4b26b0d8832d49fe8c44e2451063d90e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Biodegradation, Environmental
176 rdf:type schema:DefinedTerm
177 N4c9ed45c9de94920a8328b2a9fcab59d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Cadmium
179 rdf:type schema:DefinedTerm
180 N5861ceb127ec4e9691e284dbce835108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Adsorption
182 rdf:type schema:DefinedTerm
183 N6cd3751bfed84027a1a1116bb697dd3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Environmental Monitoring
185 rdf:type schema:DefinedTerm
186 N8490d5879abb42a4a6b1680fad7a6f3d rdf:first sg:person.011775424645.68
187 rdf:rest Nfb9771f94a334f2c8aad052cd6b6b721
188 N9a5a5f8ace7a4ff28b8a7c214e3a69e5 schema:volumeNumber 192
189 rdf:type schema:PublicationVolume
190 Na968bd427691412fbb734a929afd1408 schema:name dimensions_id
191 schema:value pub.1133010430
192 rdf:type schema:PropertyValue
193 Nc09f75d49ac046498a1af7d02e253ee1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Biomass
195 rdf:type schema:DefinedTerm
196 Nc7d39a38e14949ae9395133a40d7eb0a schema:name Springer Nature - SN SciGraph project
197 rdf:type schema:Organization
198 Ncd5b0694e64147099fc6534920028387 schema:issueNumber 12
199 rdf:type schema:PublicationIssue
200 Nd5b3cc10d396429097bddf9f9f0747a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name RNA, Ribosomal, 16S
202 rdf:type schema:DefinedTerm
203 Nf1c89ae94b7e47b887bf526e9e34e432 rdf:first sg:person.016677232503.69
204 rdf:rest rdf:nil
205 Nfa55e68a69b44b6aa9da4372f51d4b53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Hydrogen-Ion Concentration
207 rdf:type schema:DefinedTerm
208 Nfb9771f94a334f2c8aad052cd6b6b721 rdf:first sg:person.016366274214.03
209 rdf:rest N3e1c254ae20542ed83728ae505686de0
210 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
211 schema:name Chemical Sciences
212 rdf:type schema:DefinedTerm
213 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
214 schema:name Inorganic Chemistry
215 rdf:type schema:DefinedTerm
216 sg:journal.1095684 schema:issn 0167-6369
217 1573-2959
218 schema:name Environmental Monitoring and Assessment
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.011775424645.68 schema:affiliation grid-institutes:grid.411340.3
222 schema:familyName Rizvi
223 schema:givenName Asfa
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011775424645.68
225 rdf:type schema:Person
226 sg:person.012416131313.43 schema:affiliation grid-institutes:grid.411340.3
227 schema:familyName Zaidi
228 schema:givenName Almas
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012416131313.43
230 rdf:type schema:Person
231 sg:person.016366274214.03 schema:affiliation grid-institutes:grid.411340.3
232 schema:familyName Ahmed
233 schema:givenName Bilal
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366274214.03
235 rdf:type schema:Person
236 sg:person.016677232503.69 schema:affiliation grid-institutes:grid.411340.3
237 schema:familyName Khan
238 schema:givenName Mohd. Saghir
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677232503.69
240 rdf:type schema:Person
241 sg:pub.10.1007/bf03327628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021826519
242 https://doi.org/10.1007/bf03327628
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00216-003-1843-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044406636
245 https://doi.org/10.1007/s00216-003-1843-z
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s10646-019-02023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112096407
248 https://doi.org/10.1007/s10646-019-02023-3
249 rdf:type schema:CreativeWork
250 sg:pub.10.1016/j.bjm.2016.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026413630
251 https://doi.org/10.1016/j.bjm.2016.09.007
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/s41598-017-17765-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100172290
254 https://doi.org/10.1038/s41598-017-17765-5
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/s41598-018-31660-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106545382
257 https://doi.org/10.1038/s41598-018-31660-7
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/srep31575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037386615
260 https://doi.org/10.1038/srep31575
261 rdf:type schema:CreativeWork
262 grid-institutes:grid.411340.3 schema:alternateName Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India
263 schema:name Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 202002, Aligarh, India
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...