Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Narsimha Adimalla, Hui Qian, Haike Wang

ABSTRACT

The contamination of heavy metals (HMs) in agricultural soil lands has attracted the environmental world due to their abundance, persistence, and toxicity. A study has been conducted to evaluate the degree of HM contamination in the agricultural soils of northern Telangana, using geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI), enrichment factor (EF), statistical analysis, and also spatial distribution. In this study, a total of 15 surface agricultural soil samples were collected and analyzed for the concentration of HMs including Cr, Cu, Co, Ba, V, As, Ni, Pb, and Zn. Their average values vary from 3.5 to 778, which show the increasing order of their abundance: As < Ni < Pb < Co < Cu < Zn < Cr < V < Ba. The concentrations of Ba, V, Zn, and Cu are significantly higher than their guideline values, while Co, Ni, Pb, Zn, and As are within prescribed limits proposed by Canadian soil quality guidelines. The highest Igeo (1.04) indicated the extreme degree of contamination due to Cu. The estimated PI and PLI specified the low to moderate soil pollution, whereas EF showed the moderate soil pollution due to Cr, Co, V, Zn, and As. According to principal component analysis with eigenvalue, more than one account for 53.020% of the total variance, indicating the major source of anthropogenic activity. Spatial distribution maps of HMs displayed four highly polluted zones found in the agricultural sites such as Oni, Yamcha, Bederelli, and Mudhol, in northern Telangana. More... »

PAGES

246

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-019-7408-1

DOI

http://dx.doi.org/10.1007/s10661-019-7408-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113011044

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30915588


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2032an University, No. 126 Yanta Road, 710054, Xi\u2032an, Shaanxi, China", 
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang\u2032an University, No. 126 Yanta Road, 710054, Xi\u2032an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adimalla", 
        "givenName": "Narsimha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2032an University, No. 126 Yanta Road, 710054, Xi\u2032an, Shaanxi, China", 
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang\u2032an University, No. 126 Yanta Road, 710054, Xi\u2032an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2032an University, No. 126 Yanta Road, 710054, Xi\u2032an, Shaanxi, China", 
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang\u2032an University, No. 126 Yanta Road, 710054, Xi\u2032an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Haike", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2015.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000322700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2010.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000471068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-006-9224-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004203670", 
          "https://doi.org/10.1007/s10661-006-9224-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-016-0796-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008853146", 
          "https://doi.org/10.1007/s00267-016-0796-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-016-0796-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008853146", 
          "https://doi.org/10.1007/s00267-016-0796-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-016-0796-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008853146", 
          "https://doi.org/10.1007/s00267-016-0796-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2011.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010558272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.01.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017963310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-012-2192-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018581036", 
          "https://doi.org/10.1007/s12665-012-2192-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0160-4120(03)00157-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019121348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0160-4120(03)00157-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019121348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-016-5719-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027514156", 
          "https://doi.org/10.1007/s12665-016-5719-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-016-5719-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027514156", 
          "https://doi.org/10.1007/s12665-016-5719-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002540050473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027730886", 
          "https://doi.org/10.1007/s002540050473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(64)90129-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030631628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(64)90129-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030631628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2013.08.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033367180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gexplo.2013.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034756149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-008-0659-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036021983", 
          "https://doi.org/10.1007/s10661-008-0659-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-015-1596-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041940785", 
          "https://doi.org/10.1007/s10646-015-1596-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-015-1596-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041940785", 
          "https://doi.org/10.1007/s10646-015-1596-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-015-1547-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044771074", 
          "https://doi.org/10.1007/s10646-015-1547-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-013-2023-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045098936", 
          "https://doi.org/10.1007/s11356-013-2023-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-014-3642-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046401235", 
          "https://doi.org/10.1007/s12665-014-3642-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-016-0489-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047144387", 
          "https://doi.org/10.1007/s13201-016-0489-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-016-0489-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047144387", 
          "https://doi.org/10.1007/s13201-016-0489-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2017.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-017-5919-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085139430", 
          "https://doi.org/10.1007/s10661-017-5919-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-017-5919-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085139430", 
          "https://doi.org/10.1007/s10661-017-5919-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeochem.2017.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085148368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-017-1795-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090920842", 
          "https://doi.org/10.1007/s11368-017-1795-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-017-1795-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090920842", 
          "https://doi.org/10.1007/s11368-017-1795-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420039900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095905334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2018.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101334383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-018-0085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101526702", 
          "https://doi.org/10.1007/s10653-018-0085-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-018-0085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101526702", 
          "https://doi.org/10.1007/s10653-018-0085-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-018-0085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101526702", 
          "https://doi.org/10.1007/s10653-018-0085-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2018.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103989758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-018-1079-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105608566", 
          "https://doi.org/10.1007/s00267-018-1079-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-018-1079-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105608566", 
          "https://doi.org/10.1007/s00267-018-1079-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-018-2959-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106915563", 
          "https://doi.org/10.1007/s11356-018-2959-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-018-2959-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106915563", 
          "https://doi.org/10.1007/s11356-018-2959-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12403-018-0288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107185936", 
          "https://doi.org/10.1007/s12403-018-0288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41742-018-0139-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107211159", 
          "https://doi.org/10.1007/s41742-018-0139-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-018-6995-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107252599", 
          "https://doi.org/10.1007/s10661-018-6995-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-018-0193-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107273237", 
          "https://doi.org/10.1007/s10653-018-0193-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2018.10.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107820581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-4028-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109809035", 
          "https://doi.org/10.1007/s12517-018-4028-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-4021-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109902360", 
          "https://doi.org/10.1007/s12517-018-4021-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-019-00270-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112585971", 
          "https://doi.org/10.1007/s10653-019-00270-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-019-00270-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112585971", 
          "https://doi.org/10.1007/s10653-019-00270-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-019-00270-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112585971", 
          "https://doi.org/10.1007/s10653-019-00270-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The contamination of heavy metals (HMs) in agricultural soil lands has attracted the environmental world due to their abundance, persistence, and toxicity. A study has been conducted to evaluate the degree of HM contamination in the agricultural soils of northern Telangana, using geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI), enrichment factor (EF), statistical analysis, and also spatial distribution. In this study, a total of 15 surface agricultural soil samples were collected and analyzed for the concentration of HMs including Cr, Cu, Co, Ba, V, As, Ni, Pb, and Zn. Their average values vary from 3.5 to 778, which show the increasing order of their abundance: As < Ni < Pb < Co < Cu < Zn < Cr < V < Ba. The concentrations of Ba, V, Zn, and Cu are significantly higher than their guideline values, while Co, Ni, Pb, Zn, and As are within prescribed limits proposed by Canadian soil quality guidelines. The highest Igeo (1.04) indicated the extreme degree of contamination due to Cu. The estimated PI and PLI specified the low to moderate soil pollution, whereas EF showed the moderate soil pollution due to Cr, Co, V, Zn, and As. According to principal component analysis with eigenvalue, more than one account for 53.020% of the total variance, indicating the major source of anthropogenic activity. Spatial distribution maps of HMs displayed four highly polluted zones found in the agricultural sites such as Oni, Yamcha, Bederelli, and Mudhol, in northern Telangana.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-019-7408-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "191"
      }
    ], 
    "name": "Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis", 
    "pagination": "246", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dadbea916626a7181c135c690d6bed88827aadc31bbf27f05f56d3d27c97c91d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30915588"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-019-7408-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113011044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-019-7408-1", 
      "https://app.dimensions.ai/details/publication/pub.1113011044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10661-019-7408-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7408-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7408-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7408-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7408-1'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-019-7408-1 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N65cffc02be5c4b2dbffa4482eae2085f
4 schema:citation sg:pub.10.1007/s002540050473
5 sg:pub.10.1007/s00267-016-0796-x
6 sg:pub.10.1007/s00267-018-1079-5
7 sg:pub.10.1007/s10646-015-1547-0
8 sg:pub.10.1007/s10646-015-1596-4
9 sg:pub.10.1007/s10653-018-0085-0
10 sg:pub.10.1007/s10653-018-0193-x
11 sg:pub.10.1007/s10653-019-00270-1
12 sg:pub.10.1007/s10661-006-9224-7
13 sg:pub.10.1007/s10661-008-0659-x
14 sg:pub.10.1007/s10661-017-5919-1
15 sg:pub.10.1007/s10661-018-6995-6
16 sg:pub.10.1007/s11356-013-2023-0
17 sg:pub.10.1007/s11356-018-2959-1
18 sg:pub.10.1007/s11368-017-1795-0
19 sg:pub.10.1007/s12403-018-0288-8
20 sg:pub.10.1007/s12517-018-4021-5
21 sg:pub.10.1007/s12517-018-4028-y
22 sg:pub.10.1007/s12665-012-2192-z
23 sg:pub.10.1007/s12665-014-3642-6
24 sg:pub.10.1007/s12665-016-5719-x
25 sg:pub.10.1007/s13201-016-0489-x
26 sg:pub.10.1007/s41742-018-0139-2
27 https://doi.org/10.1016/0016-7037(64)90129-2
28 https://doi.org/10.1016/j.apgeochem.2017.05.002
29 https://doi.org/10.1016/j.atmosenv.2011.11.041
30 https://doi.org/10.1016/j.atmosenv.2014.01.054
31 https://doi.org/10.1016/j.catena.2018.02.029
32 https://doi.org/10.1016/j.chemosphere.2018.10.066
33 https://doi.org/10.1016/j.envres.2017.01.021
34 https://doi.org/10.1016/j.geoderma.2010.02.005
35 https://doi.org/10.1016/j.gexplo.2013.08.012
36 https://doi.org/10.1016/j.scitotenv.2013.08.090
37 https://doi.org/10.1016/j.scitotenv.2015.01.025
38 https://doi.org/10.1016/j.scitotenv.2018.05.033
39 https://doi.org/10.1016/s0160-4120(03)00157-0
40 https://doi.org/10.1201/9781420039900
41 schema:datePublished 2019-04
42 schema:datePublishedReg 2019-04-01
43 schema:description The contamination of heavy metals (HMs) in agricultural soil lands has attracted the environmental world due to their abundance, persistence, and toxicity. A study has been conducted to evaluate the degree of HM contamination in the agricultural soils of northern Telangana, using geo-accumulation index (I<sub>geo</sub>), pollution index (PI), pollution load index (PLI), enrichment factor (EF), statistical analysis, and also spatial distribution. In this study, a total of 15 surface agricultural soil samples were collected and analyzed for the concentration of HMs including Cr, Cu, Co, Ba, V, As, Ni, Pb, and Zn. Their average values vary from 3.5 to 778, which show the increasing order of their abundance: As &lt; Ni &lt; Pb &lt; Co &lt; Cu &lt; Zn &lt; Cr &lt; V &lt; Ba. The concentrations of Ba, V, Zn, and Cu are significantly higher than their guideline values, while Co, Ni, Pb, Zn, and As are within prescribed limits proposed by Canadian soil quality guidelines. The highest I<sub>geo</sub> (1.04) indicated the extreme degree of contamination due to Cu. The estimated PI and PLI specified the low to moderate soil pollution, whereas EF showed the moderate soil pollution due to Cr, Co, V, Zn, and As. According to principal component analysis with eigenvalue, more than one account for 53.020% of the total variance, indicating the major source of anthropogenic activity. Spatial distribution maps of HMs displayed four highly polluted zones found in the agricultural sites such as Oni, Yamcha, Bederelli, and Mudhol, in northern Telangana.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nac841ae3ae8a41f4803e03d0ddd94441
48 Neceb186650c4401eb968960ab0d18e04
49 sg:journal.1095684
50 schema:name Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis
51 schema:pagination 246
52 schema:productId N074fdf13ced3428abef0fc6e61fd9fb3
53 N82874368635e4298b8ba4faab8194c8f
54 Na472e8e5a4e24f23a87b01124aadef23
55 Nad3f629fe143427e9acd8e856a81c6fc
56 Nc442a763055b4923bdbf9c1f43bcf53f
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113011044
58 https://doi.org/10.1007/s10661-019-7408-1
59 schema:sdDatePublished 2019-04-11T13:21
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N7e2af61ef94746d4b48653c4564018b9
62 schema:url https://link.springer.com/10.1007%2Fs10661-019-7408-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N074fdf13ced3428abef0fc6e61fd9fb3 schema:name pubmed_id
67 schema:value 30915588
68 rdf:type schema:PropertyValue
69 N212bad70d3c4414d829fc03b4e99dc15 rdf:first N9b366c2631d94c719ead29e98fe13ef7
70 rdf:rest N860b74af99a843a3ab9caf4394aa2697
71 N518b04bc45a44e89bb8e2cb12dded91a schema:affiliation https://www.grid.ac/institutes/grid.440661.1
72 schema:familyName Adimalla
73 schema:givenName Narsimha
74 rdf:type schema:Person
75 N65cffc02be5c4b2dbffa4482eae2085f rdf:first N518b04bc45a44e89bb8e2cb12dded91a
76 rdf:rest N212bad70d3c4414d829fc03b4e99dc15
77 N7e2af61ef94746d4b48653c4564018b9 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N82874368635e4298b8ba4faab8194c8f schema:name readcube_id
80 schema:value dadbea916626a7181c135c690d6bed88827aadc31bbf27f05f56d3d27c97c91d
81 rdf:type schema:PropertyValue
82 N860b74af99a843a3ab9caf4394aa2697 rdf:first Nae5f943ebb40481abac146af126aae64
83 rdf:rest rdf:nil
84 N9b366c2631d94c719ead29e98fe13ef7 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
85 schema:familyName Qian
86 schema:givenName Hui
87 rdf:type schema:Person
88 Na472e8e5a4e24f23a87b01124aadef23 schema:name dimensions_id
89 schema:value pub.1113011044
90 rdf:type schema:PropertyValue
91 Nac841ae3ae8a41f4803e03d0ddd94441 schema:volumeNumber 191
92 rdf:type schema:PublicationVolume
93 Nad3f629fe143427e9acd8e856a81c6fc schema:name nlm_unique_id
94 schema:value 8508350
95 rdf:type schema:PropertyValue
96 Nae5f943ebb40481abac146af126aae64 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
97 schema:familyName Wang
98 schema:givenName Haike
99 rdf:type schema:Person
100 Nc442a763055b4923bdbf9c1f43bcf53f schema:name doi
101 schema:value 10.1007/s10661-019-7408-1
102 rdf:type schema:PropertyValue
103 Neceb186650c4401eb968960ab0d18e04 schema:issueNumber 4
104 rdf:type schema:PublicationIssue
105 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
106 schema:name Environmental Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
109 schema:name Soil Sciences
110 rdf:type schema:DefinedTerm
111 sg:journal.1095684 schema:issn 0167-6369
112 1573-2959
113 schema:name Environmental Monitoring and Assessment
114 rdf:type schema:Periodical
115 sg:pub.10.1007/s002540050473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027730886
116 https://doi.org/10.1007/s002540050473
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00267-016-0796-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008853146
119 https://doi.org/10.1007/s00267-016-0796-x
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00267-018-1079-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105608566
122 https://doi.org/10.1007/s00267-018-1079-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10646-015-1547-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044771074
125 https://doi.org/10.1007/s10646-015-1547-0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10646-015-1596-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041940785
128 https://doi.org/10.1007/s10646-015-1596-4
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10653-018-0085-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101526702
131 https://doi.org/10.1007/s10653-018-0085-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10653-018-0193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273237
134 https://doi.org/10.1007/s10653-018-0193-x
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10653-019-00270-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112585971
137 https://doi.org/10.1007/s10653-019-00270-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10661-006-9224-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004203670
140 https://doi.org/10.1007/s10661-006-9224-7
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10661-008-0659-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036021983
143 https://doi.org/10.1007/s10661-008-0659-x
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10661-017-5919-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085139430
146 https://doi.org/10.1007/s10661-017-5919-1
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10661-018-6995-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107252599
149 https://doi.org/10.1007/s10661-018-6995-6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11356-013-2023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045098936
152 https://doi.org/10.1007/s11356-013-2023-0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11356-018-2959-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106915563
155 https://doi.org/10.1007/s11356-018-2959-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11368-017-1795-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090920842
158 https://doi.org/10.1007/s11368-017-1795-0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s12403-018-0288-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107185936
161 https://doi.org/10.1007/s12403-018-0288-8
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s12517-018-4021-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109902360
164 https://doi.org/10.1007/s12517-018-4021-5
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s12517-018-4028-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1109809035
167 https://doi.org/10.1007/s12517-018-4028-y
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s12665-012-2192-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018581036
170 https://doi.org/10.1007/s12665-012-2192-z
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s12665-014-3642-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046401235
173 https://doi.org/10.1007/s12665-014-3642-6
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s12665-016-5719-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027514156
176 https://doi.org/10.1007/s12665-016-5719-x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s13201-016-0489-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047144387
179 https://doi.org/10.1007/s13201-016-0489-x
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s41742-018-0139-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107211159
182 https://doi.org/10.1007/s41742-018-0139-2
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0016-7037(64)90129-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030631628
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.apgeochem.2017.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085148368
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.atmosenv.2011.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010558272
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.atmosenv.2014.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017963310
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.catena.2018.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101334383
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.chemosphere.2018.10.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107820581
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.envres.2017.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083752586
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.geoderma.2010.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000471068
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.gexplo.2013.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034756149
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.scitotenv.2013.08.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033367180
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.scitotenv.2015.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000322700
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.scitotenv.2018.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103989758
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0160-4120(03)00157-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019121348
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1201/9781420039900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095905334
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.440661.1 schema:alternateName Chang'an University
213 schema:name Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang′an University, No. 126 Yanta Road, 710054, Xi′an, Shaanxi, China
214 School of Environmental Science and Engineering, Chang′an University, No. 126 Yanta Road, 710054, Xi′an, Shaanxi, China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...