Analyzing trends of days with low atmospheric visibility in Iran during 1968–2013 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Alireza Araghi, Mohammad Mousavi-Baygi, Jan Adamowski, Christopher J. Martinez

ABSTRACT

Atmospheric visibility (AV) is an indicator for assessing air quality and is measured in standard weather stations. The AV can change as a result of two main factors: air pollution and atmospheric humidity. This study aimed to investigate trends in the number of days with AV equal or less than 2 km (DAV2) in Iran during 1968-2013. Consequently, 43 weather stations with different climates were evaluated across the country, using the Mann-Kendall (MK) trend test. The results show that the number of stations with positive (i.e., significant or non-significant) MK z values was equal to, or greater than, those with negative MK z values, in all months and seasons of the year, as well as annually. Furthermore, summer and autumn had, respectively, the least and most stations with positive MK z values. Fewer trends in DAV2 were detected in the central, east, and northeast regions of the country. Analyzing the DAV2 and relative humidity together indicated that over 30% of stations had at-risk air quality in January, and that the largest number of stations with at-risk air quality was in the autumn and winter. These results are useful for better environmental planning to improve air quality, especially in developing countries such as Iran, where reduced air quality has been a major problem in recent decades. More... »

PAGES

249

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8

DOI

http://dx.doi.org/10.1007/s10661-019-7381-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113048629

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30919080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araghi", 
        "givenName": "Alireza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mousavi-Baygi", 
        "givenName": "Mohammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Bioresource Engineering, Faculty of Agriculture and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamowski", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez", 
        "givenName": "Christopher J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.atmosres.2014.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001931204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2011.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003851969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00028896109343378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006698440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2008.09.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008638924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.05.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014391487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2015.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015202317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021154368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022235809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1499-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023461495", 
          "https://doi.org/10.1007/s00704-015-1499-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026139320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027808182", 
          "https://doi.org/10.1038/ngeo414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr020i006p00727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032647831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2009.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035689370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035958929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10668-014-9615-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041960050", 
          "https://doi.org/10.1007/s10668-014-9615-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(97)00125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042183119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045793047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.06.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046850509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr018i001p00107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051860100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052691427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2013.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053694529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069636719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-16-2435-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072652581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090934811", 
          "https://doi.org/10.1038/nclimate3354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090934811", 
          "https://doi.org/10.1038/nclimate3354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2017.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091053322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-017-6196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091376080", 
          "https://doi.org/10.1007/s10661-017-6196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-017-6196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091376080", 
          "https://doi.org/10.1007/s10661-017-6196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2017.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091437115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Atmospheric visibility (AV) is an indicator for assessing air quality and is measured in standard weather stations. The AV can change as a result of two main factors: air pollution and atmospheric humidity. This study aimed to investigate trends in the number of days with AV equal or less than 2\u00a0km (DAV2) in Iran during 1968-2013. Consequently, 43 weather stations with different climates were evaluated across the country, using the Mann-Kendall (MK) trend test. The results show that the number of stations with positive (i.e., significant or non-significant) MK z values was equal to, or greater than, those with negative MK z values, in all months and seasons of the year, as well as annually. Furthermore, summer and autumn had, respectively, the least and most stations with positive MK z values. Fewer trends in DAV2 were detected in the central, east, and northeast regions of the country. Analyzing the DAV2 and relative humidity together indicated that over 30% of stations had at-risk air quality in January, and that the largest number of stations with at-risk air quality was in the autumn and winter. These results are useful for better environmental planning to improve air quality, especially in developing countries such as Iran, where reduced air quality has been a major problem in recent decades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-019-7381-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "191"
      }
    ], 
    "name": "Analyzing trends of days with low atmospheric visibility in Iran during 1968\u20132013", 
    "pagination": "249", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4232275a456dbe978c613322653000d0063d1b4fbdeb75a31508655b457c7c2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30919080"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-019-7381-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113048629"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-019-7381-8", 
      "https://app.dimensions.ai/details/publication/pub.1113048629"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10661-019-7381-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-019-7381-8 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N8f450dcb59a9496e846238b258f76e2d
4 schema:citation sg:pub.10.1007/s00704-015-1499-6
5 sg:pub.10.1007/s10661-017-6196-8
6 sg:pub.10.1007/s10668-014-9615-9
7 sg:pub.10.1038/nclimate3354
8 sg:pub.10.1038/ngeo414
9 https://doi.org/10.1002/hyp.1095
10 https://doi.org/10.1016/j.atmosenv.2005.06.012
11 https://doi.org/10.1016/j.atmosenv.2008.09.067
12 https://doi.org/10.1016/j.atmosenv.2012.03.037
13 https://doi.org/10.1016/j.atmosenv.2012.05.023
14 https://doi.org/10.1016/j.atmosenv.2012.09.008
15 https://doi.org/10.1016/j.atmosenv.2015.02.015
16 https://doi.org/10.1016/j.atmosres.2009.05.006
17 https://doi.org/10.1016/j.atmosres.2011.04.016
18 https://doi.org/10.1016/j.atmosres.2011.04.019
19 https://doi.org/10.1016/j.atmosres.2013.06.011
20 https://doi.org/10.1016/j.atmosres.2014.02.001
21 https://doi.org/10.1016/j.atmosres.2014.11.016
22 https://doi.org/10.1016/j.atmosres.2015.12.022
23 https://doi.org/10.1016/j.envres.2017.08.018
24 https://doi.org/10.1016/j.jhydrol.2012.05.066
25 https://doi.org/10.1016/j.scitotenv.2016.06.190
26 https://doi.org/10.1016/j.still.2017.07.010
27 https://doi.org/10.1016/s0022-1694(97)00125-x
28 https://doi.org/10.1029/wr018i001p00107
29 https://doi.org/10.1029/wr020i006p00727
30 https://doi.org/10.1080/00028896109343378
31 https://doi.org/10.2307/1907187
32 https://doi.org/10.5194/acp-16-2435-2016
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description Atmospheric visibility (AV) is an indicator for assessing air quality and is measured in standard weather stations. The AV can change as a result of two main factors: air pollution and atmospheric humidity. This study aimed to investigate trends in the number of days with AV equal or less than 2 km (D<sub>AV2</sub>) in Iran during 1968-2013. Consequently, 43 weather stations with different climates were evaluated across the country, using the Mann-Kendall (MK) trend test. The results show that the number of stations with positive (i.e., significant or non-significant) MK z values was equal to, or greater than, those with negative MK z values, in all months and seasons of the year, as well as annually. Furthermore, summer and autumn had, respectively, the least and most stations with positive MK z values. Fewer trends in D<sub>AV2</sub> were detected in the central, east, and northeast regions of the country. Analyzing the D<sub>AV2</sub> and relative humidity together indicated that over 30% of stations had at-risk air quality in January, and that the largest number of stations with at-risk air quality was in the autumn and winter. These results are useful for better environmental planning to improve air quality, especially in developing countries such as Iran, where reduced air quality has been a major problem in recent decades.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N2a06806e3dcd4f078e617fa5573ad251
40 N82274e664c13456baa66725633aa7269
41 sg:journal.1095684
42 schema:name Analyzing trends of days with low atmospheric visibility in Iran during 1968–2013
43 schema:pagination 249
44 schema:productId N12bdf2ec45414ad798ac9ec253a46acc
45 N31a8b6759d4d4b0383351f0c774b3cbf
46 N8ce551157a97481997ba76bbc80e9ad1
47 Ne4d8f6872872412b8353fc01208c3bee
48 Nf90e60c62321448ebd433ba9184c0e4c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113048629
50 https://doi.org/10.1007/s10661-019-7381-8
51 schema:sdDatePublished 2019-04-11T13:29
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N7821677d60bb44889e628624938101a1
54 schema:url https://link.springer.com/10.1007%2Fs10661-019-7381-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0ffd3b42d29740a1a0b7b2dac4e80984 rdf:first N3dc8b6b525e94ca18964f15acee925ac
59 rdf:rest rdf:nil
60 N12bdf2ec45414ad798ac9ec253a46acc schema:name readcube_id
61 schema:value e4232275a456dbe978c613322653000d0063d1b4fbdeb75a31508655b457c7c2
62 rdf:type schema:PropertyValue
63 N186e32079ef5495eb805904ffbeb9820 rdf:first Ncf95948722da48349bbc04dd81889c59
64 rdf:rest N50fc25097bc34bcd9fe95584e02401ea
65 N2a06806e3dcd4f078e617fa5573ad251 schema:volumeNumber 191
66 rdf:type schema:PublicationVolume
67 N31a8b6759d4d4b0383351f0c774b3cbf schema:name doi
68 schema:value 10.1007/s10661-019-7381-8
69 rdf:type schema:PropertyValue
70 N3dc8b6b525e94ca18964f15acee925ac schema:affiliation https://www.grid.ac/institutes/grid.15276.37
71 schema:familyName Martinez
72 schema:givenName Christopher J.
73 rdf:type schema:Person
74 N50fc25097bc34bcd9fe95584e02401ea rdf:first N92a37a6397144ad7a3f4b536cef6c942
75 rdf:rest N0ffd3b42d29740a1a0b7b2dac4e80984
76 N66865542cad74cbea32721adecbffc77 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
77 schema:familyName Araghi
78 schema:givenName Alireza
79 rdf:type schema:Person
80 N7821677d60bb44889e628624938101a1 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N82274e664c13456baa66725633aa7269 schema:issueNumber 4
83 rdf:type schema:PublicationIssue
84 N8ce551157a97481997ba76bbc80e9ad1 schema:name nlm_unique_id
85 schema:value 8508350
86 rdf:type schema:PropertyValue
87 N8f450dcb59a9496e846238b258f76e2d rdf:first N66865542cad74cbea32721adecbffc77
88 rdf:rest N186e32079ef5495eb805904ffbeb9820
89 N92a37a6397144ad7a3f4b536cef6c942 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
90 schema:familyName Adamowski
91 schema:givenName Jan
92 rdf:type schema:Person
93 Ncf95948722da48349bbc04dd81889c59 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
94 schema:familyName Mousavi-Baygi
95 schema:givenName Mohammad
96 rdf:type schema:Person
97 Ne4d8f6872872412b8353fc01208c3bee schema:name dimensions_id
98 schema:value pub.1113048629
99 rdf:type schema:PropertyValue
100 Nf90e60c62321448ebd433ba9184c0e4c schema:name pubmed_id
101 schema:value 30919080
102 rdf:type schema:PropertyValue
103 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
104 schema:name Earth Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
107 schema:name Atmospheric Sciences
108 rdf:type schema:DefinedTerm
109 sg:journal.1095684 schema:issn 0167-6369
110 1573-2959
111 schema:name Environmental Monitoring and Assessment
112 rdf:type schema:Periodical
113 sg:pub.10.1007/s00704-015-1499-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023461495
114 https://doi.org/10.1007/s00704-015-1499-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10661-017-6196-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091376080
117 https://doi.org/10.1007/s10661-017-6196-8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10668-014-9615-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041960050
120 https://doi.org/10.1007/s10668-014-9615-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nclimate3354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090934811
123 https://doi.org/10.1038/nclimate3354
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ngeo414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808182
126 https://doi.org/10.1038/ngeo414
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/hyp.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052691427
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.atmosenv.2005.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026139320
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.atmosenv.2008.09.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008638924
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.atmosenv.2012.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021154368
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.atmosenv.2012.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689370
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.atmosenv.2012.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022235809
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.atmosenv.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045793047
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.atmosres.2009.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838448
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.atmosres.2011.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003851969
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.atmosres.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035958929
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.atmosres.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053694529
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.atmosres.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029061
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.atmosres.2014.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001931204
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.atmosres.2015.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015202317
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.envres.2017.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091437115
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jhydrol.2012.05.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014391487
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.scitotenv.2016.06.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046850509
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.still.2017.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091053322
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0022-1694(97)00125-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042183119
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/wr018i001p00107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051860100
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/wr020i006p00727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032647831
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/00028896109343378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006698440
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2307/1907187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069636719
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5194/acp-16-2435-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072652581
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
177 schema:name Department of Bioresource Engineering, Faculty of Agriculture and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
180 schema:name Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
183 schema:name Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...