Analyzing trends of days with low atmospheric visibility in Iran during 1968–2013 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Alireza Araghi, Mohammad Mousavi-Baygi, Jan Adamowski, Christopher J. Martinez

ABSTRACT

Atmospheric visibility (AV) is an indicator for assessing air quality and is measured in standard weather stations. The AV can change as a result of two main factors: air pollution and atmospheric humidity. This study aimed to investigate trends in the number of days with AV equal or less than 2 km (DAV2) in Iran during 1968-2013. Consequently, 43 weather stations with different climates were evaluated across the country, using the Mann-Kendall (MK) trend test. The results show that the number of stations with positive (i.e., significant or non-significant) MK z values was equal to, or greater than, those with negative MK z values, in all months and seasons of the year, as well as annually. Furthermore, summer and autumn had, respectively, the least and most stations with positive MK z values. Fewer trends in DAV2 were detected in the central, east, and northeast regions of the country. Analyzing the DAV2 and relative humidity together indicated that over 30% of stations had at-risk air quality in January, and that the largest number of stations with at-risk air quality was in the autumn and winter. These results are useful for better environmental planning to improve air quality, especially in developing countries such as Iran, where reduced air quality has been a major problem in recent decades. More... »

PAGES

249

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8

DOI

http://dx.doi.org/10.1007/s10661-019-7381-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113048629

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30919080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araghi", 
        "givenName": "Alireza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mousavi-Baygi", 
        "givenName": "Mohammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Bioresource Engineering, Faculty of Agriculture and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamowski", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez", 
        "givenName": "Christopher J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.atmosres.2014.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001931204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2011.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003851969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00028896109343378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006698440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2008.09.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008638924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.05.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014391487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2015.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015202317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021154368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022235809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1499-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023461495", 
          "https://doi.org/10.1007/s00704-015-1499-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026139320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027808182", 
          "https://doi.org/10.1038/ngeo414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr020i006p00727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032647831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2009.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035689370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035958929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10668-014-9615-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041960050", 
          "https://doi.org/10.1007/s10668-014-9615-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(97)00125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042183119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045793047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.06.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046850509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr018i001p00107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051860100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052691427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2013.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053694529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069636719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-16-2435-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072652581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090934811", 
          "https://doi.org/10.1038/nclimate3354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090934811", 
          "https://doi.org/10.1038/nclimate3354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2017.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091053322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-017-6196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091376080", 
          "https://doi.org/10.1007/s10661-017-6196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-017-6196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091376080", 
          "https://doi.org/10.1007/s10661-017-6196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2017.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091437115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Atmospheric visibility (AV) is an indicator for assessing air quality and is measured in standard weather stations. The AV can change as a result of two main factors: air pollution and atmospheric humidity. This study aimed to investigate trends in the number of days with AV equal or less than 2\u00a0km (DAV2) in Iran during 1968-2013. Consequently, 43 weather stations with different climates were evaluated across the country, using the Mann-Kendall (MK) trend test. The results show that the number of stations with positive (i.e., significant or non-significant) MK z values was equal to, or greater than, those with negative MK z values, in all months and seasons of the year, as well as annually. Furthermore, summer and autumn had, respectively, the least and most stations with positive MK z values. Fewer trends in DAV2 were detected in the central, east, and northeast regions of the country. Analyzing the DAV2 and relative humidity together indicated that over 30% of stations had at-risk air quality in January, and that the largest number of stations with at-risk air quality was in the autumn and winter. These results are useful for better environmental planning to improve air quality, especially in developing countries such as Iran, where reduced air quality has been a major problem in recent decades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-019-7381-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "191"
      }
    ], 
    "name": "Analyzing trends of days with low atmospheric visibility in Iran during 1968\u20132013", 
    "pagination": "249", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4232275a456dbe978c613322653000d0063d1b4fbdeb75a31508655b457c7c2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30919080"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-019-7381-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113048629"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-019-7381-8", 
      "https://app.dimensions.ai/details/publication/pub.1113048629"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10661-019-7381-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7381-8'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-019-7381-8 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nc2ed5d33087e4af3b4f88055844f29fb
4 schema:citation sg:pub.10.1007/s00704-015-1499-6
5 sg:pub.10.1007/s10661-017-6196-8
6 sg:pub.10.1007/s10668-014-9615-9
7 sg:pub.10.1038/nclimate3354
8 sg:pub.10.1038/ngeo414
9 https://doi.org/10.1002/hyp.1095
10 https://doi.org/10.1016/j.atmosenv.2005.06.012
11 https://doi.org/10.1016/j.atmosenv.2008.09.067
12 https://doi.org/10.1016/j.atmosenv.2012.03.037
13 https://doi.org/10.1016/j.atmosenv.2012.05.023
14 https://doi.org/10.1016/j.atmosenv.2012.09.008
15 https://doi.org/10.1016/j.atmosenv.2015.02.015
16 https://doi.org/10.1016/j.atmosres.2009.05.006
17 https://doi.org/10.1016/j.atmosres.2011.04.016
18 https://doi.org/10.1016/j.atmosres.2011.04.019
19 https://doi.org/10.1016/j.atmosres.2013.06.011
20 https://doi.org/10.1016/j.atmosres.2014.02.001
21 https://doi.org/10.1016/j.atmosres.2014.11.016
22 https://doi.org/10.1016/j.atmosres.2015.12.022
23 https://doi.org/10.1016/j.envres.2017.08.018
24 https://doi.org/10.1016/j.jhydrol.2012.05.066
25 https://doi.org/10.1016/j.scitotenv.2016.06.190
26 https://doi.org/10.1016/j.still.2017.07.010
27 https://doi.org/10.1016/s0022-1694(97)00125-x
28 https://doi.org/10.1029/wr018i001p00107
29 https://doi.org/10.1029/wr020i006p00727
30 https://doi.org/10.1080/00028896109343378
31 https://doi.org/10.2307/1907187
32 https://doi.org/10.5194/acp-16-2435-2016
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description Atmospheric visibility (AV) is an indicator for assessing air quality and is measured in standard weather stations. The AV can change as a result of two main factors: air pollution and atmospheric humidity. This study aimed to investigate trends in the number of days with AV equal or less than 2 km (D<sub>AV2</sub>) in Iran during 1968-2013. Consequently, 43 weather stations with different climates were evaluated across the country, using the Mann-Kendall (MK) trend test. The results show that the number of stations with positive (i.e., significant or non-significant) MK z values was equal to, or greater than, those with negative MK z values, in all months and seasons of the year, as well as annually. Furthermore, summer and autumn had, respectively, the least and most stations with positive MK z values. Fewer trends in D<sub>AV2</sub> were detected in the central, east, and northeast regions of the country. Analyzing the D<sub>AV2</sub> and relative humidity together indicated that over 30% of stations had at-risk air quality in January, and that the largest number of stations with at-risk air quality was in the autumn and winter. These results are useful for better environmental planning to improve air quality, especially in developing countries such as Iran, where reduced air quality has been a major problem in recent decades.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nd29a1ed20d8e422c962c593816871a46
40 Nd83c61125e514cc48da98826779605f1
41 sg:journal.1095684
42 schema:name Analyzing trends of days with low atmospheric visibility in Iran during 1968–2013
43 schema:pagination 249
44 schema:productId N1428067d83b043a29e073cc78adaca2e
45 N236e810b2c494b08bde8b09f7026133e
46 N4127acf56adf4bb8a672f25588cbff75
47 Nc164899523054ba1a96e77a4f171c29c
48 Nf04035f6360341a39b3793d702f240ca
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113048629
50 https://doi.org/10.1007/s10661-019-7381-8
51 schema:sdDatePublished 2019-04-11T13:29
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N3c888a3c776a43e6892a1b222983d223
54 schema:url https://link.springer.com/10.1007%2Fs10661-019-7381-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N08a8131fc5f14ceeaee9ce8a8d168fdf rdf:first Ndc1991c9447447eeb35e99afa74b8dc3
59 rdf:rest Na2f0cab1623947ca983900338fb685a8
60 N1428067d83b043a29e073cc78adaca2e schema:name pubmed_id
61 schema:value 30919080
62 rdf:type schema:PropertyValue
63 N236e810b2c494b08bde8b09f7026133e schema:name nlm_unique_id
64 schema:value 8508350
65 rdf:type schema:PropertyValue
66 N319e53491a684af09397a6b191eb7253 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
67 schema:familyName Adamowski
68 schema:givenName Jan
69 rdf:type schema:Person
70 N3c888a3c776a43e6892a1b222983d223 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N4127acf56adf4bb8a672f25588cbff75 schema:name dimensions_id
73 schema:value pub.1113048629
74 rdf:type schema:PropertyValue
75 N41e4e72931e941f898c4c6782734ce61 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
76 schema:familyName Araghi
77 schema:givenName Alireza
78 rdf:type schema:Person
79 N9aa7b636898a48f88934114179ab4baf schema:affiliation https://www.grid.ac/institutes/grid.15276.37
80 schema:familyName Martinez
81 schema:givenName Christopher J.
82 rdf:type schema:Person
83 Na2f0cab1623947ca983900338fb685a8 rdf:first N319e53491a684af09397a6b191eb7253
84 rdf:rest Ndafb98203e6b4c749cf35a72e6bbca3a
85 Nc164899523054ba1a96e77a4f171c29c schema:name doi
86 schema:value 10.1007/s10661-019-7381-8
87 rdf:type schema:PropertyValue
88 Nc2ed5d33087e4af3b4f88055844f29fb rdf:first N41e4e72931e941f898c4c6782734ce61
89 rdf:rest N08a8131fc5f14ceeaee9ce8a8d168fdf
90 Nd29a1ed20d8e422c962c593816871a46 schema:volumeNumber 191
91 rdf:type schema:PublicationVolume
92 Nd83c61125e514cc48da98826779605f1 schema:issueNumber 4
93 rdf:type schema:PublicationIssue
94 Ndafb98203e6b4c749cf35a72e6bbca3a rdf:first N9aa7b636898a48f88934114179ab4baf
95 rdf:rest rdf:nil
96 Ndc1991c9447447eeb35e99afa74b8dc3 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
97 schema:familyName Mousavi-Baygi
98 schema:givenName Mohammad
99 rdf:type schema:Person
100 Nf04035f6360341a39b3793d702f240ca schema:name readcube_id
101 schema:value e4232275a456dbe978c613322653000d0063d1b4fbdeb75a31508655b457c7c2
102 rdf:type schema:PropertyValue
103 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
104 schema:name Earth Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
107 schema:name Atmospheric Sciences
108 rdf:type schema:DefinedTerm
109 sg:journal.1095684 schema:issn 0167-6369
110 1573-2959
111 schema:name Environmental Monitoring and Assessment
112 rdf:type schema:Periodical
113 sg:pub.10.1007/s00704-015-1499-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023461495
114 https://doi.org/10.1007/s00704-015-1499-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10661-017-6196-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091376080
117 https://doi.org/10.1007/s10661-017-6196-8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10668-014-9615-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041960050
120 https://doi.org/10.1007/s10668-014-9615-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nclimate3354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090934811
123 https://doi.org/10.1038/nclimate3354
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ngeo414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808182
126 https://doi.org/10.1038/ngeo414
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/hyp.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052691427
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.atmosenv.2005.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026139320
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.atmosenv.2008.09.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008638924
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.atmosenv.2012.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021154368
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.atmosenv.2012.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689370
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.atmosenv.2012.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022235809
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.atmosenv.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045793047
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.atmosres.2009.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838448
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.atmosres.2011.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003851969
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.atmosres.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035958929
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.atmosres.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053694529
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.atmosres.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029061
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.atmosres.2014.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001931204
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.atmosres.2015.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015202317
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.envres.2017.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091437115
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jhydrol.2012.05.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014391487
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.scitotenv.2016.06.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046850509
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.still.2017.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091053322
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0022-1694(97)00125-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042183119
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/wr018i001p00107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051860100
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/wr020i006p00727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032647831
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/00028896109343378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006698440
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2307/1907187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069636719
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5194/acp-16-2435-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072652581
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
177 schema:name Department of Bioresource Engineering, Faculty of Agriculture and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
180 schema:name Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
183 schema:name Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...