Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Esmaeel Dodangeh, Kaka Shahedi, Karim Solaimani, Jenq-Tzong Shiau, John Abraham

ABSTRACT

Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student's t copula is the best-fit copula for PAMS-QAMS with Gaussian-Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR-GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant. More... »

PAGES

67

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0

DOI

http://dx.doi.org/10.1007/s10661-019-7202-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111375187

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30637530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iran", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rivers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uncertainty", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Movements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Resources", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dodangeh", 
        "givenName": "Esmaeel", 
        "id": "sg:person.016603773653.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603773653.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahedi", 
        "givenName": "Kaka", 
        "id": "sg:person.014632522523.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632522523.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solaimani", 
        "givenName": "Karim", 
        "id": "sg:person.012572266353.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572266353.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cheng Kung University", 
          "id": "https://www.grid.ac/institutes/grid.64523.36", 
          "name": [
            "Department of Hydraulic and Ocean Engineering, National Cheng Kung University, 701, Tainan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiau", 
        "givenName": "Jenq-Tzong", 
        "id": "sg:person.012402125605.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402125605.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of St. Thomas", 
          "id": "https://www.grid.ac/institutes/grid.267207.6", 
          "name": [
            "School of Engineering, University of St. Thomas, 2115 Summit Ave, 55105-1079, St. Paul, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abraham", 
        "givenName": "John", 
        "id": "sg:person.01277606377.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277606377.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/aoms/1177729747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001843872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005744129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199909)19:11<1233::aid-joc413>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005753513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.8287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007462551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007615790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0239-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799125", 
          "https://doi.org/10.1007/s11069-012-0239-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0239-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799125", 
          "https://doi.org/10.1007/s11069-012-0239-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wrcr.20531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011202825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713666155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011309700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-008-9287-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012299538", 
          "https://doi.org/10.1007/s11269-008-9287-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.07.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012688394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2016.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012826879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012911745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-005-9008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015087225", 
          "https://doi.org/10.1007/s11269-005-9008-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626667.2012.726357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017059031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007800200085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018041389", 
          "https://doi.org/10.1007/s007800200085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3339.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020679017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3339.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020679017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021139189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e14091784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022359908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-141-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025232609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2016.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026583073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027305290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10666-012-9318-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028604140", 
          "https://doi.org/10.1007/s10666-012-9318-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-014-0568-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030341789", 
          "https://doi.org/10.1007/s11269-014-0568-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jam2465.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031191973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2004.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032170826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033018431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033018431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033304345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-012-0650-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033345170", 
          "https://doi.org/10.1007/s00477-012-0650-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2011.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034224895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-015-0972-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035668594", 
          "https://doi.org/10.1007/s11269-015-0972-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2015.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036015864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037667722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038919477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038919477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2013.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040761985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(99)00168-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040862158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2013.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041078725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042911639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043522590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2012.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044748843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pce.2008.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045181729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0187-6236(14)70039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046126435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1752-1688.1988.tb00916.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049261101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003wr002456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049357795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049609562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050026216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051328503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ird.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051616957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wrcr.20551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052164570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-53199-5.00045-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053358945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2015.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053507161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1991)117:7(811)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057589893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1972.10488981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v021.i04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v034.i09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20937/atm.2016.29.04.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068814091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2010.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069636719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2017.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083863882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-017-0312-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085403680", 
          "https://doi.org/10.1007/s40808-017-0312-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-017-0312-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085403680", 
          "https://doi.org/10.1007/s40808-017-0312-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109701408", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118673331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109701408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1990.tb01796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1990.tb01796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458651"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student's t copula is the best-fit copula for PAMS-QAMS with Gaussian-Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR-GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-019-7202-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "191"
      }
    ], 
    "name": "Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT)", 
    "pagination": "67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c632d52afeef05f8b26346e560c1da0971d6d9a8d1e7e600b55ef0394e4c0600"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30637530"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-019-7202-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111375187"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-019-7202-0", 
      "https://app.dimensions.ai/details/publication/pub.1111375187"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10661-019-7202-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'


 

This table displays all metadata directly associated to this object as RDF triples.

341 TRIPLES      21 PREDICATES      102 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-019-7202-0 schema:about N18d58fe4398d4121bbc0b404eaf177fd
2 N195f5f07f8b74d92b99809c47bffc635
3 N3931ba1605c841d1b1272192755ff276
4 N71d735b77b3a43bf89f973c5e5964010
5 N7dd1d49591ed456495f0c144a0d1c097
6 Nb2f5a09ab4b340eb8b5552d266b481fb
7 Nc576b6e9294f49ca9c347b4a4cc3e907
8 Nd44d6c40cced4745b02e8f3fa7dfaded
9 anzsrc-for:04
10 anzsrc-for:0406
11 schema:author N6fb5add56f884b6491f14fa3e8ade973
12 schema:citation sg:pub.10.1007/s00477-012-0650-5
13 sg:pub.10.1007/s007800200085
14 sg:pub.10.1007/s10666-012-9318-2
15 sg:pub.10.1007/s11069-012-0239-9
16 sg:pub.10.1007/s11269-005-9008-9
17 sg:pub.10.1007/s11269-008-9287-z
18 sg:pub.10.1007/s11269-014-0568-4
19 sg:pub.10.1007/s11269-015-0972-4
20 sg:pub.10.1007/s40808-017-0312-1
21 https://app.dimensions.ai/details/publication/pub.1109701408
22 https://doi.org/10.1002/(sici)1097-0088(199909)19:11<1233::aid-joc413>3.0.co;2-l
23 https://doi.org/10.1002/9781118673331
24 https://doi.org/10.1002/hyp.259
25 https://doi.org/10.1002/hyp.8287
26 https://doi.org/10.1002/ird.90
27 https://doi.org/10.1002/met.139
28 https://doi.org/10.1002/met.145
29 https://doi.org/10.1002/wrcr.20531
30 https://doi.org/10.1002/wrcr.20551
31 https://doi.org/10.1016/b978-0-444-53199-5.00045-2
32 https://doi.org/10.1016/j.advwatres.2011.10.006
33 https://doi.org/10.1016/j.advwatres.2015.12.017
34 https://doi.org/10.1016/j.advwatres.2016.11.011
35 https://doi.org/10.1016/j.coastaleng.2013.01.011
36 https://doi.org/10.1016/j.coastaleng.2013.12.009
37 https://doi.org/10.1016/j.coastaleng.2016.08.002
38 https://doi.org/10.1016/j.coastaleng.2017.02.003
39 https://doi.org/10.1016/j.gloplacha.2015.03.001
40 https://doi.org/10.1016/j.insmatheco.2007.10.005
41 https://doi.org/10.1016/j.jhydrol.2009.10.029
42 https://doi.org/10.1016/j.jhydrol.2009.11.013
43 https://doi.org/10.1016/j.jhydrol.2012.06.039
44 https://doi.org/10.1016/j.jhydrol.2013.12.006
45 https://doi.org/10.1016/j.jhydrol.2015.05.030
46 https://doi.org/10.1016/j.jhydrol.2015.05.033
47 https://doi.org/10.1016/j.jhydrol.2015.07.053
48 https://doi.org/10.1016/j.jhydrol.2016.01.017
49 https://doi.org/10.1016/j.jhydrol.2016.06.044
50 https://doi.org/10.1016/j.jmva.2012.02.021
51 https://doi.org/10.1016/j.pce.2008.09.004
52 https://doi.org/10.1016/j.petrol.2004.02.007
53 https://doi.org/10.1016/s0022-1694(99)00168-7
54 https://doi.org/10.1016/s0187-6236(14)70039-6
55 https://doi.org/10.1029/1999wr900152
56 https://doi.org/10.1029/2003wr002456
57 https://doi.org/10.1029/2007wr006744
58 https://doi.org/10.1061/(asce)0733-9429(1991)117:7(811)
59 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347)
60 https://doi.org/10.1080/00401706.1972.10488981
61 https://doi.org/10.1080/01621459.1993.10476372
62 https://doi.org/10.1080/02626667.2012.726357
63 https://doi.org/10.1080/713666155
64 https://doi.org/10.1111/j.1752-1688.1988.tb00916.x
65 https://doi.org/10.1111/j.2517-6161.1990.tb01796.x
66 https://doi.org/10.1175/jam2465.1
67 https://doi.org/10.1175/jcli3339.1
68 https://doi.org/10.1214/aoms/1177729437
69 https://doi.org/10.1214/aoms/1177729747
70 https://doi.org/10.18637/jss.v021.i04
71 https://doi.org/10.18637/jss.v034.i09
72 https://doi.org/10.20937/atm.2016.29.04.02
73 https://doi.org/10.2166/nh.2010.048
74 https://doi.org/10.2307/1907187
75 https://doi.org/10.3390/e14091784
76 https://doi.org/10.5194/hess-15-141-2011
77 schema:datePublished 2019-02
78 schema:datePublishedReg 2019-02-01
79 schema:description Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student's t copula is the best-fit copula for P<sub>AMS</sub>-Q<sub>AMS</sub> with Gaussian-Pearson III (P3) margins, while the Plackett copula is the best-fit copula for P<sub>POT</sub>-Q<sub>POT</sub> with generalized Pareto (GPAR-GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant.
80 schema:genre research_article
81 schema:inLanguage en
82 schema:isAccessibleForFree false
83 schema:isPartOf N722c7fd131684f8fb18ea5098899a55b
84 Nc92ba1d1bbde4227bc9f74e0c0d05fd1
85 sg:journal.1095684
86 schema:name Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT)
87 schema:pagination 67
88 schema:productId N4b06a75db8ce41c588187e11c5460250
89 N7d788cb5edf845228bb6894e3a969c0e
90 N96f75587dbfa4d5f95e25c4425528c65
91 Nbacd435b1f3145edabb8717fbf0cdf69
92 Nfcda8559b16446378da334ae2c222f01
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111375187
94 https://doi.org/10.1007/s10661-019-7202-0
95 schema:sdDatePublished 2019-04-11T11:03
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Ne5939f750a0b423987a639cc03d4d9a0
98 schema:url https://link.springer.com/10.1007%2Fs10661-019-7202-0
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N12b833373871429588da4361d9e0019e rdf:first sg:person.01277606377.62
103 rdf:rest rdf:nil
104 N18d58fe4398d4121bbc0b404eaf177fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Environmental Monitoring
106 rdf:type schema:DefinedTerm
107 N195f5f07f8b74d92b99809c47bffc635 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Water Resources
109 rdf:type schema:DefinedTerm
110 N3931ba1605c841d1b1272192755ff276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Iran
112 rdf:type schema:DefinedTerm
113 N4b06a75db8ce41c588187e11c5460250 schema:name pubmed_id
114 schema:value 30637530
115 rdf:type schema:PropertyValue
116 N63936ded330d40a29692324e679b5f47 rdf:first sg:person.014632522523.45
117 rdf:rest Nb1186617e6c1469d81c17ebb8ddbf1ae
118 N6fb5add56f884b6491f14fa3e8ade973 rdf:first sg:person.016603773653.47
119 rdf:rest N63936ded330d40a29692324e679b5f47
120 N70b54c68a9dc41c2b8f9c785560f1dca schema:name Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran
121 rdf:type schema:Organization
122 N71d735b77b3a43bf89f973c5e5964010 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Rivers
124 rdf:type schema:DefinedTerm
125 N722c7fd131684f8fb18ea5098899a55b schema:volumeNumber 191
126 rdf:type schema:PublicationVolume
127 N7d788cb5edf845228bb6894e3a969c0e schema:name nlm_unique_id
128 schema:value 8508350
129 rdf:type schema:PropertyValue
130 N7dd1d49591ed456495f0c144a0d1c097 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Rain
132 rdf:type schema:DefinedTerm
133 N8b5856286bad401682ad65bc33e9757e schema:name Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran
134 rdf:type schema:Organization
135 N96f75587dbfa4d5f95e25c4425528c65 schema:name dimensions_id
136 schema:value pub.1111375187
137 rdf:type schema:PropertyValue
138 Nb1186617e6c1469d81c17ebb8ddbf1ae rdf:first sg:person.012572266353.10
139 rdf:rest Ndfe7a82f531a403db9c88f9b6a5cef83
140 Nb2f5a09ab4b340eb8b5552d266b481fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Uncertainty
142 rdf:type schema:DefinedTerm
143 Nbacd435b1f3145edabb8717fbf0cdf69 schema:name doi
144 schema:value 10.1007/s10661-019-7202-0
145 rdf:type schema:PropertyValue
146 Nc576b6e9294f49ca9c347b4a4cc3e907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Models, Statistical
148 rdf:type schema:DefinedTerm
149 Nc92ba1d1bbde4227bc9f74e0c0d05fd1 schema:issueNumber 2
150 rdf:type schema:PublicationIssue
151 Nc9356072426a4cfb89c797a21b2613a2 schema:name Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran
152 rdf:type schema:Organization
153 Nd44d6c40cced4745b02e8f3fa7dfaded schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Water Movements
155 rdf:type schema:DefinedTerm
156 Ndfe7a82f531a403db9c88f9b6a5cef83 rdf:first sg:person.012402125605.50
157 rdf:rest N12b833373871429588da4361d9e0019e
158 Ne5939f750a0b423987a639cc03d4d9a0 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 Nfcda8559b16446378da334ae2c222f01 schema:name readcube_id
161 schema:value c632d52afeef05f8b26346e560c1da0971d6d9a8d1e7e600b55ef0394e4c0600
162 rdf:type schema:PropertyValue
163 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
164 schema:name Earth Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
167 schema:name Physical Geography and Environmental Geoscience
168 rdf:type schema:DefinedTerm
169 sg:journal.1095684 schema:issn 0167-6369
170 1573-2959
171 schema:name Environmental Monitoring and Assessment
172 rdf:type schema:Periodical
173 sg:person.012402125605.50 schema:affiliation https://www.grid.ac/institutes/grid.64523.36
174 schema:familyName Shiau
175 schema:givenName Jenq-Tzong
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402125605.50
177 rdf:type schema:Person
178 sg:person.012572266353.10 schema:affiliation N70b54c68a9dc41c2b8f9c785560f1dca
179 schema:familyName Solaimani
180 schema:givenName Karim
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572266353.10
182 rdf:type schema:Person
183 sg:person.01277606377.62 schema:affiliation https://www.grid.ac/institutes/grid.267207.6
184 schema:familyName Abraham
185 schema:givenName John
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277606377.62
187 rdf:type schema:Person
188 sg:person.014632522523.45 schema:affiliation Nc9356072426a4cfb89c797a21b2613a2
189 schema:familyName Shahedi
190 schema:givenName Kaka
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632522523.45
192 rdf:type schema:Person
193 sg:person.016603773653.47 schema:affiliation N8b5856286bad401682ad65bc33e9757e
194 schema:familyName Dodangeh
195 schema:givenName Esmaeel
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603773653.47
197 rdf:type schema:Person
198 sg:pub.10.1007/s00477-012-0650-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033345170
199 https://doi.org/10.1007/s00477-012-0650-5
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s007800200085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018041389
202 https://doi.org/10.1007/s007800200085
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s10666-012-9318-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028604140
205 https://doi.org/10.1007/s10666-012-9318-2
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s11069-012-0239-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008799125
208 https://doi.org/10.1007/s11069-012-0239-9
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s11269-005-9008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015087225
211 https://doi.org/10.1007/s11269-005-9008-9
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s11269-008-9287-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012299538
214 https://doi.org/10.1007/s11269-008-9287-z
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s11269-014-0568-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030341789
217 https://doi.org/10.1007/s11269-014-0568-4
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s11269-015-0972-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035668594
220 https://doi.org/10.1007/s11269-015-0972-4
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s40808-017-0312-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085403680
223 https://doi.org/10.1007/s40808-017-0312-1
224 rdf:type schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1109701408 schema:CreativeWork
226 https://doi.org/10.1002/(sici)1097-0088(199909)19:11<1233::aid-joc413>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1005753513
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/9781118673331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109701408
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/hyp.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042911639
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/hyp.8287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007462551
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/ird.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051616957
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/met.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038919477
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/met.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033018431
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/wrcr.20531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011202825
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/wrcr.20551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052164570
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/b978-0-444-53199-5.00045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053358945
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.advwatres.2011.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034224895
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.advwatres.2015.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053507161
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.advwatres.2016.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012826879
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.coastaleng.2013.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041078725
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.coastaleng.2013.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040761985
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.coastaleng.2016.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026583073
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.coastaleng.2017.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083863882
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.gloplacha.2015.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036015864
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.insmatheco.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037667722
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.jhydrol.2009.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021139189
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.jhydrol.2009.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051328503
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.jhydrol.2012.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012911745
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.jhydrol.2013.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049609562
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.jhydrol.2015.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027305290
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.jhydrol.2015.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005744129
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.jhydrol.2015.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012688394
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.jhydrol.2016.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007615790
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.jhydrol.2016.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033304345
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.jmva.2012.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044748843
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.pce.2008.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045181729
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.petrol.2004.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032170826
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/s0022-1694(99)00168-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040862158
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/s0187-6236(14)70039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046126435
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1029/1999wr900152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050026216
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1029/2003wr002456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049357795
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1029/2007wr006744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043522590
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1061/(asce)0733-9429(1991)117:7(811) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057589893
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616434
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1080/00401706.1972.10488981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284470
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1080/01621459.1993.10476372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304456
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1080/02626667.2012.726357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017059031
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1080/713666155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011309700
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1111/j.1752-1688.1988.tb00916.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049261101
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1111/j.2517-6161.1990.tb01796.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458651
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1175/jam2465.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031191973
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1175/jcli3339.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020679017
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1214/aoms/1177729437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401678
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1214/aoms/1177729747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001843872
321 rdf:type schema:CreativeWork
322 https://doi.org/10.18637/jss.v021.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672314
323 rdf:type schema:CreativeWork
324 https://doi.org/10.18637/jss.v034.i09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672518
325 rdf:type schema:CreativeWork
326 https://doi.org/10.20937/atm.2016.29.04.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068814091
327 rdf:type schema:CreativeWork
328 https://doi.org/10.2166/nh.2010.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135403
329 rdf:type schema:CreativeWork
330 https://doi.org/10.2307/1907187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069636719
331 rdf:type schema:CreativeWork
332 https://doi.org/10.3390/e14091784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022359908
333 rdf:type schema:CreativeWork
334 https://doi.org/10.5194/hess-15-141-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025232609
335 rdf:type schema:CreativeWork
336 https://www.grid.ac/institutes/grid.267207.6 schema:alternateName University of St. Thomas
337 schema:name School of Engineering, University of St. Thomas, 2115 Summit Ave, 55105-1079, St. Paul, MN, USA
338 rdf:type schema:Organization
339 https://www.grid.ac/institutes/grid.64523.36 schema:alternateName National Cheng Kung University
340 schema:name Department of Hydraulic and Ocean Engineering, National Cheng Kung University, 701, Tainan, Taiwan
341 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...