Ontology type: schema:ScholarlyArticle
2019-02
AUTHORSEsmaeel Dodangeh, Kaka Shahedi, Karim Solaimani, Jenq-Tzong Shiau, John Abraham
ABSTRACTBivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student's t copula is the best-fit copula for PAMS-QAMS with Gaussian-Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR-GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant. More... »
PAGES67
http://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0
DOIhttp://dx.doi.org/10.1007/s10661-019-7202-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111375187
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30637530
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Environmental Monitoring",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Iran",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Statistical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Rain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Rivers",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Uncertainty",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Water Movements",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Water Resources",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran"
],
"type": "Organization"
},
"familyName": "Dodangeh",
"givenName": "Esmaeel",
"id": "sg:person.016603773653.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603773653.47"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran"
],
"type": "Organization"
},
"familyName": "Shahedi",
"givenName": "Kaka",
"id": "sg:person.014632522523.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632522523.45"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Watershed Management, Sari Agriculture Science and Natural Resources University, P.O. Box 737, Sari, Iran"
],
"type": "Organization"
},
"familyName": "Solaimani",
"givenName": "Karim",
"id": "sg:person.012572266353.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572266353.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Cheng Kung University",
"id": "https://www.grid.ac/institutes/grid.64523.36",
"name": [
"Department of Hydraulic and Ocean Engineering, National Cheng Kung University, 701, Tainan, Taiwan"
],
"type": "Organization"
},
"familyName": "Shiau",
"givenName": "Jenq-Tzong",
"id": "sg:person.012402125605.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402125605.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of St. Thomas",
"id": "https://www.grid.ac/institutes/grid.267207.6",
"name": [
"School of Engineering, University of St. Thomas, 2115 Summit Ave, 55105-1079, St. Paul, MN, USA"
],
"type": "Organization"
},
"familyName": "Abraham",
"givenName": "John",
"id": "sg:person.01277606377.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277606377.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1214/aoms/1177729747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001843872"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2015.05.033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005744129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1097-0088(199909)19:11<1233::aid-joc413>3.0.co;2-l",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005753513"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hyp.8287",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007462551"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2016.01.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007615790"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11069-012-0239-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008799125",
"https://doi.org/10.1007/s11069-012-0239-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11069-012-0239-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008799125",
"https://doi.org/10.1007/s11069-012-0239-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/wrcr.20531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011202825"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/713666155",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011309700"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11269-008-9287-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012299538",
"https://doi.org/10.1007/s11269-008-9287-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2015.07.053",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012688394"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.advwatres.2016.11.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012826879"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2012.06.039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012911745"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11269-005-9008-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015087225",
"https://doi.org/10.1007/s11269-005-9008-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02626667.2012.726357",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017059031"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s007800200085",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018041389",
"https://doi.org/10.1007/s007800200085"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1175/jcli3339.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020679017"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1175/jcli3339.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020679017"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2009.10.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021139189"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/e14091784",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022359908"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5194/hess-15-141-2011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025232609"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.coastaleng.2016.08.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026583073"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2015.05.030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027305290"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10666-012-9318-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028604140",
"https://doi.org/10.1007/s10666-012-9318-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11269-014-0568-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030341789",
"https://doi.org/10.1007/s11269-014-0568-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1175/jam2465.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031191973"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.petrol.2004.02.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032170826"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/met.145",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033018431"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/met.145",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033018431"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2016.06.044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033304345"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00477-012-0650-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033345170",
"https://doi.org/10.1007/s00477-012-0650-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.advwatres.2011.10.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034224895"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11269-015-0972-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035668594",
"https://doi.org/10.1007/s11269-015-0972-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.gloplacha.2015.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036015864"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.insmatheco.2007.10.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037667722"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/met.139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038919477"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/met.139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038919477"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.coastaleng.2013.12.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040761985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-1694(99)00168-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040862158"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.coastaleng.2013.01.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041078725"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hyp.259",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042911639"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1029/2007wr006744",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043522590"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmva.2012.02.021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044748843"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pce.2008.09.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045181729"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0187-6236(14)70039-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046126435"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1752-1688.1988.tb00916.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049261101"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1029/2003wr002456",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049357795"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2013.12.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049609562"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1029/1999wr900152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050026216"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2009.11.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051328503"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ird.90",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051616957"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/wrcr.20551",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052164570"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-444-53199-5.00045-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053358945"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.advwatres.2015.12.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053507161"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1061/(asce)0733-9429(1991)117:7(811)",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057589893"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347)",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057616434"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00401706.1972.10488981",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058284470"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1993.10476372",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058304456"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aoms/1177729437",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064401678"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.18637/jss.v021.i04",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068672314"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.18637/jss.v034.i09",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068672518"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.20937/atm.2016.29.04.02",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068814091"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2166/nh.2010.048",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069135403"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1907187",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069636719"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.coastaleng.2017.02.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083863882"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40808-017-0312-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085403680",
"https://doi.org/10.1007/s40808-017-0312-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40808-017-0312-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085403680",
"https://doi.org/10.1007/s40808-017-0312-1"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1109701408",
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/9781118673331",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109701408"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.2517-6161.1990.tb01796.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110458651"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.2517-6161.1990.tb01796.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110458651"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-02",
"datePublishedReg": "2019-02-01",
"description": "Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student's t copula is the best-fit copula for PAMS-QAMS with Gaussian-Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR-GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10661-019-7202-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1095684",
"issn": [
"0167-6369",
"1573-2959"
],
"name": "Environmental Monitoring and Assessment",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "191"
}
],
"name": "Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT)",
"pagination": "67",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"c632d52afeef05f8b26346e560c1da0971d6d9a8d1e7e600b55ef0394e4c0600"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30637530"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"8508350"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10661-019-7202-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111375187"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10661-019-7202-0",
"https://app.dimensions.ai/details/publication/pub.1111375187"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T11:03",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000003.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10661-019-7202-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-019-7202-0'
This table displays all metadata directly associated to this object as RDF triples.
341 TRIPLES
21 PREDICATES
102 URIs
29 LITERALS
17 BLANK NODES