Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11-15

AUTHORS

Tanmoy Karak, Ranjit Kumar Paul, Dilip Kumar Das, Romesh Kumar Boruah

ABSTRACT

Two alkaline soils collected from the surface horizon (0–15 cm) of two agricultural fields Lakshmikantapur (LKP; 22° 06′ 03″ N and 88° 18′ 19″ E) and Diamond Harbour (DHB; 22° 11′ N and 88° 14′ E) of West Bengal, India were studied to observe the stability of cadmium (Cd) chelate complexes with diethylenetriaminepentaacetatic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA), removing organic matter (OM). The objective of the present study is “determination of the stability constants and the thermodynamic parameters of Cd-DTPA and Cd-EDTA complexes at different pH and temperatures at the soil-water interface”. Complex formation of soil Cd with DTPA and EDTA at the soil-water interface was studied under different ligand-to-metal ratios, pHs and temperatures. Apparent conditional stability constants (log k´) were calculated from the concentrations of Cd chelates and free Cd2+, estimated by solid phase extraction with an ion exchanger. Standard Gibbs energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) of formation were calculated at three different temperatures. The higher stability constants of Cd-DTPA than Cd-EDTA indicated longer persistence of Cd-DTPA at the soil solution interface than Cd-EDTA complex. Increase of ΔG°, ΔH° and ΔS° with progress of temperature revealed that Cd-complex formation was facilitated by temperature. Highly negative ΔG° and positive ΔH° for Cd-complex formation indicated the reaction spontaneous and exothermic. In general, both ligands complexed high percentages of cadmium signalling their role in enhancing remobilization of Cd present in soil and preventing exchange of contaminated Cd from external source with soil mineral matrix; these phenomena may greatly reduce hazard for environment and human health. The result of this study support that DTPA increases solubility and more persistence of Cd in acidic soils within the range of temperature and mole fraction (MF = moles of Cd2+ / sum of the moles of Cd2+ and chelating agent) than that of EDTA due to higher capability of complex formation with Cd2+. Therefore, DTPA enhanced Cd toxicity in acid soils and groundwater. Complex formation in the presence of DTPA at acidic pH decreases with temperature and increases with pH. The higher per cent of Cd complexed in the presence of DTPA revealed that DTPA is a stronger chelating agent than EDTA at acidic pHs. Whereas, the capability of complex formation by EDTA is lower at lower pH but higher at higher pH. More... »

PAGES

670

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-016-5685-5

DOI

http://dx.doi.org/10.1007/s10661-016-5685-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036137950

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27848112


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadmium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chelating Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coordination Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Edetic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "India", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pentetic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solubility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solutions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101, Dibrugarh, Assam, India", 
          "id": "http://www.grid.ac/institutes/grid.482359.1", 
          "name": [
            "Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101, Dibrugarh, Assam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karak", 
        "givenName": "Tanmoy", 
        "id": "sg:person.01171226265.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171226265.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, 110012, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.463150.5", 
          "name": [
            "Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paul", 
        "givenName": "Ranjit Kumar", 
        "id": "sg:person.01117402222.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117402222.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India", 
          "id": "http://www.grid.ac/institutes/grid.444578.e", 
          "name": [
            "Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Dilip Kumar", 
        "id": "sg:person.0767342124.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767342124.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101, Dibrugarh, Assam, India", 
          "id": "http://www.grid.ac/institutes/grid.482359.1", 
          "name": [
            "Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101, Dibrugarh, Assam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boruah", 
        "givenName": "Romesh Kumar", 
        "id": "sg:person.01035455324.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035455324.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11270-005-9006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027557158", 
          "https://doi.org/10.1007/s11270-005-9006-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-015-4923-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035879477", 
          "https://doi.org/10.1007/s10661-015-4923-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-15", 
    "datePublishedReg": "2016-11-15", 
    "description": "Two alkaline soils collected from the surface horizon (0\u201315\u00a0cm) of two agricultural fields Lakshmikantapur (LKP; 22\u00b0 06\u2032 03\u2033 N and 88\u00b0 18\u2032 19\u2033 E) and Diamond Harbour (DHB; 22\u00b0 11\u2032 N and 88\u00b0 14\u2032 E) of West Bengal, India were studied to observe the stability of cadmium (Cd) chelate complexes with diethylenetriaminepentaacetatic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA), removing organic matter (OM). The objective of the present study is \u201cdetermination of the stability constants and the thermodynamic parameters of Cd-DTPA and Cd-EDTA complexes at different pH and temperatures at the soil-water interface\u201d. Complex formation of soil Cd with DTPA and EDTA at the soil-water interface was studied under different ligand-to-metal ratios, pHs and temperatures. Apparent conditional stability constants (log k\u00b4) were calculated from the concentrations of Cd chelates and free Cd2+, estimated by solid phase extraction with an ion exchanger. Standard Gibbs energy (\u0394G\u00b0), standard enthalpy (\u0394H\u00b0) and standard entropy (\u0394S\u00b0) of formation were calculated at three different temperatures. The higher stability constants of Cd-DTPA than Cd-EDTA indicated longer persistence of Cd-DTPA at the soil solution interface than Cd-EDTA complex. Increase of \u0394G\u00b0, \u0394H\u00b0 and \u0394S\u00b0 with progress of temperature revealed that Cd-complex formation was facilitated by temperature. Highly negative \u0394G\u00b0 and positive \u0394H\u00b0 for Cd-complex formation indicated the reaction spontaneous and exothermic. In general, both ligands complexed high percentages of cadmium signalling their role in enhancing remobilization of Cd present in soil and preventing exchange of contaminated Cd from external source with soil mineral matrix; these phenomena may greatly reduce hazard for environment and human health. The result of this study support that DTPA increases solubility and more persistence of Cd in acidic soils within the range of temperature and mole fraction (MF\u00a0=\u00a0moles of Cd2+\u00a0/\u00a0sum of the moles of Cd2+ and chelating agent) than that of EDTA due to higher capability of complex formation with Cd2+. Therefore, DTPA enhanced Cd toxicity in acid soils and groundwater. Complex formation in the presence of DTPA at acidic pH decreases with temperature and increases with pH. The higher per cent of Cd complexed in the presence of DTPA revealed that DTPA is a stronger chelating agent than EDTA at acidic pHs. Whereas, the capability of complex formation by EDTA is lower at lower pH but higher at higher pH.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10661-016-5685-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7736007", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "188"
      }
    ], 
    "keywords": [
      "soil-water interface", 
      "Cd-DTPA", 
      "Cd-EDTA complex", 
      "organic matter", 
      "soil mineral matrix", 
      "increase of \u0394G", 
      "surface horizons", 
      "soil Cd", 
      "acidic soils", 
      "acid soils", 
      "Cd-EDTA", 
      "free Cd2", 
      "soil", 
      "Cd chelates", 
      "Diamond Harbour", 
      "Cd present", 
      "mineral matrix", 
      "long persistence", 
      "human health", 
      "Cd toxicity", 
      "West Bengal", 
      "pH decrease", 
      "Cd", 
      "strong chelating agent", 
      "ethylenediaminetetraacetic acid", 
      "persistence", 
      "increase solubility", 
      "pH", 
      "low pH", 
      "groundwater", 
      "horizon", 
      "high capability", 
      "cadmium", 
      "matter", 
      "Harbour", 
      "positive \u0394H", 
      "high percentage", 
      "remobilization", 
      "external sources", 
      "Bengal", 
      "high stability constants", 
      "India", 
      "hazards", 
      "environment", 
      "conditional stability constants", 
      "chelating agent", 
      "alkaline", 
      "different pH", 
      "increase", 
      "source", 
      "objective", 
      "metal ratio", 
      "fraction", 
      "range", 
      "temperature", 
      "health", 
      "concentration", 
      "extraction", 
      "present", 
      "present study", 
      "toxicity", 
      "range of temperatures", 
      "percentage", 
      "solubility", 
      "exchange", 
      "presence", 
      "study support", 
      "decrease", 
      "more persistence", 
      "study", 
      "parameters", 
      "acidic pH", 
      "solid phase extraction", 
      "results", 
      "complexation", 
      "role", 
      "ratio", 
      "progress", 
      "phase extraction", 
      "negative \u0394G", 
      "cent", 
      "capability", 
      "support", 
      "stability", 
      "Cd2", 
      "formation", 
      "matrix", 
      "stability constants", 
      "chelates", 
      "determination", 
      "interface", 
      "complexes", 
      "different temperatures", 
      "acid", 
      "phenomenon", 
      "energy", 
      "ion exchangers", 
      "constants", 
      "entropy", 
      "agents", 
      "chelate complexes", 
      "solution interface", 
      "thermodynamic parameters", 
      "standard Gibbs energy", 
      "\u0394H", 
      "\u0394G", 
      "standard entropy", 
      "complex formation", 
      "reaction", 
      "\u0394S", 
      "different ligands", 
      "standard enthalpy", 
      "Gibbs energy", 
      "ligands", 
      "exchanger", 
      "enthalpy", 
      "agricultural fields Lakshmikantapur", 
      "fields Lakshmikantapur", 
      "Lakshmikantapur", 
      "cadmium (Cd) chelate complexes", 
      "DTPA", 
      "Apparent conditional stability constants", 
      "soil solution interface", 
      "progress of temperature", 
      "Cd-complex formation", 
      "DTPA increases solubility", 
      "presence of DTPA", 
      "acidic pH decreases", 
      "cent of Cd", 
      "Complexation of DTPA"
    ], 
    "name": "Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface", 
    "pagination": "670", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036137950"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-016-5685-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27848112"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-016-5685-5", 
      "https://app.dimensions.ai/details/publication/pub.1036137950"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_688.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10661-016-5685-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5685-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5685-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5685-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5685-5'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      22 PREDICATES      174 URIs      164 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-016-5685-5 schema:about N24351189268d4e2ba129c7392a9e3439
2 N2f05c794942849ba991affd5014f527e
3 N351908f486634a41a3a34180965d2dd3
4 N472e091064b24e068fe5608ca8befc5a
5 N4bea63125e83479d9b16c73cdf9d4523
6 N502f85acc3414647a0b4bf98c1a66348
7 N646c8722b6b54efd82b64944a62f8c53
8 N64be77bd490d49d8934a3236a2c641a9
9 N6de50edc736a4098ae8f4c2b2b390b9c
10 N8ff57799988a4d23913f76f5d7dce992
11 N9b86543047484bd0ad578233c101bf16
12 N9d187e99d0084226a5bfb813cc3ca1ef
13 Na1615f7410f34004900fe4d5c2fc6011
14 Nc75e8c72465247e2944876760ea9cf11
15 Nfcc0aa63a2d34c1482fb6888a7b1a731
16 Nfe286d09c79c44a99bada4768e1a08e2
17 anzsrc-for:05
18 anzsrc-for:0503
19 schema:author N7fafaa15d1ed43798d511d24daa1368f
20 schema:citation sg:pub.10.1007/s10661-015-4923-6
21 sg:pub.10.1007/s11270-005-9006-9
22 schema:datePublished 2016-11-15
23 schema:datePublishedReg 2016-11-15
24 schema:description Two alkaline soils collected from the surface horizon (0–15 cm) of two agricultural fields Lakshmikantapur (LKP; 22° 06′ 03″ N and 88° 18′ 19″ E) and Diamond Harbour (DHB; 22° 11′ N and 88° 14′ E) of West Bengal, India were studied to observe the stability of cadmium (Cd) chelate complexes with diethylenetriaminepentaacetatic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA), removing organic matter (OM). The objective of the present study is “determination of the stability constants and the thermodynamic parameters of Cd-DTPA and Cd-EDTA complexes at different pH and temperatures at the soil-water interface”. Complex formation of soil Cd with DTPA and EDTA at the soil-water interface was studied under different ligand-to-metal ratios, pHs and temperatures. Apparent conditional stability constants (log k´) were calculated from the concentrations of Cd chelates and free Cd2+, estimated by solid phase extraction with an ion exchanger. Standard Gibbs energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) of formation were calculated at three different temperatures. The higher stability constants of Cd-DTPA than Cd-EDTA indicated longer persistence of Cd-DTPA at the soil solution interface than Cd-EDTA complex. Increase of ΔG°, ΔH° and ΔS° with progress of temperature revealed that Cd-complex formation was facilitated by temperature. Highly negative ΔG° and positive ΔH° for Cd-complex formation indicated the reaction spontaneous and exothermic. In general, both ligands complexed high percentages of cadmium signalling their role in enhancing remobilization of Cd present in soil and preventing exchange of contaminated Cd from external source with soil mineral matrix; these phenomena may greatly reduce hazard for environment and human health. The result of this study support that DTPA increases solubility and more persistence of Cd in acidic soils within the range of temperature and mole fraction (MF = moles of Cd2+ / sum of the moles of Cd2+ and chelating agent) than that of EDTA due to higher capability of complex formation with Cd2+. Therefore, DTPA enhanced Cd toxicity in acid soils and groundwater. Complex formation in the presence of DTPA at acidic pH decreases with temperature and increases with pH. The higher per cent of Cd complexed in the presence of DTPA revealed that DTPA is a stronger chelating agent than EDTA at acidic pHs. Whereas, the capability of complex formation by EDTA is lower at lower pH but higher at higher pH.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N1d924f39a67d4e9085c496ae17ae21aa
29 Nf0a98ed48f48444b826af28a3503eb1b
30 sg:journal.1095684
31 schema:keywords Apparent conditional stability constants
32 Bengal
33 Cd
34 Cd chelates
35 Cd present
36 Cd toxicity
37 Cd-DTPA
38 Cd-EDTA
39 Cd-EDTA complex
40 Cd-complex formation
41 Cd2
42 Complexation of DTPA
43 DTPA
44 DTPA increases solubility
45 Diamond Harbour
46 Gibbs energy
47 Harbour
48 India
49 Lakshmikantapur
50 West Bengal
51 acid
52 acid soils
53 acidic pH
54 acidic pH decreases
55 acidic soils
56 agents
57 agricultural fields Lakshmikantapur
58 alkaline
59 cadmium
60 cadmium (Cd) chelate complexes
61 capability
62 cent
63 cent of Cd
64 chelate complexes
65 chelates
66 chelating agent
67 complex formation
68 complexation
69 complexes
70 concentration
71 conditional stability constants
72 constants
73 decrease
74 determination
75 different ligands
76 different pH
77 different temperatures
78 energy
79 enthalpy
80 entropy
81 environment
82 ethylenediaminetetraacetic acid
83 exchange
84 exchanger
85 external sources
86 extraction
87 fields Lakshmikantapur
88 formation
89 fraction
90 free Cd2
91 groundwater
92 hazards
93 health
94 high capability
95 high percentage
96 high stability constants
97 horizon
98 human health
99 increase
100 increase of ΔG
101 increase solubility
102 interface
103 ion exchangers
104 ligands
105 long persistence
106 low pH
107 matrix
108 matter
109 metal ratio
110 mineral matrix
111 more persistence
112 negative ΔG
113 objective
114 organic matter
115 pH
116 pH decrease
117 parameters
118 percentage
119 persistence
120 phase extraction
121 phenomenon
122 positive ΔH
123 presence
124 presence of DTPA
125 present
126 present study
127 progress
128 progress of temperature
129 range
130 range of temperatures
131 ratio
132 reaction
133 remobilization
134 results
135 role
136 soil
137 soil Cd
138 soil mineral matrix
139 soil solution interface
140 soil-water interface
141 solid phase extraction
142 solubility
143 solution interface
144 source
145 stability
146 stability constants
147 standard Gibbs energy
148 standard enthalpy
149 standard entropy
150 strong chelating agent
151 study
152 study support
153 support
154 surface horizons
155 temperature
156 thermodynamic parameters
157 toxicity
158 ΔG
159 ΔH
160 ΔS
161 schema:name Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface
162 schema:pagination 670
163 schema:productId N3ec2be191ddd4a1a8bb8ea49cdf857d1
164 Ne6026c07a4934d248278795f02c07480
165 Nfa8ebe2b430742b6a338892d74d07067
166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036137950
167 https://doi.org/10.1007/s10661-016-5685-5
168 schema:sdDatePublished 2021-11-01T18:26
169 schema:sdLicense https://scigraph.springernature.com/explorer/license/
170 schema:sdPublisher N2afab01774e34371a85e1c135b2f8a69
171 schema:url https://doi.org/10.1007/s10661-016-5685-5
172 sgo:license sg:explorer/license/
173 sgo:sdDataset articles
174 rdf:type schema:ScholarlyArticle
175 N10cf45d47107491bb20694525d3d1936 rdf:first sg:person.01117402222.22
176 rdf:rest Nef9e044977f44e19bc4975131ad1af50
177 N1d924f39a67d4e9085c496ae17ae21aa schema:issueNumber 12
178 rdf:type schema:PublicationIssue
179 N24351189268d4e2ba129c7392a9e3439 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Soil
181 rdf:type schema:DefinedTerm
182 N2afab01774e34371a85e1c135b2f8a69 schema:name Springer Nature - SN SciGraph project
183 rdf:type schema:Organization
184 N2f05c794942849ba991affd5014f527e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Hydrogen-Ion Concentration
186 rdf:type schema:DefinedTerm
187 N351908f486634a41a3a34180965d2dd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Chelating Agents
189 rdf:type schema:DefinedTerm
190 N3ec2be191ddd4a1a8bb8ea49cdf857d1 schema:name pubmed_id
191 schema:value 27848112
192 rdf:type schema:PropertyValue
193 N472e091064b24e068fe5608ca8befc5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Pentetic Acid
195 rdf:type schema:DefinedTerm
196 N4bea63125e83479d9b16c73cdf9d4523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Environmental Monitoring
198 rdf:type schema:DefinedTerm
199 N502f85acc3414647a0b4bf98c1a66348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Thermodynamics
201 rdf:type schema:DefinedTerm
202 N646c8722b6b54efd82b64944a62f8c53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Cadmium
204 rdf:type schema:DefinedTerm
205 N64be77bd490d49d8934a3236a2c641a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Edetic Acid
207 rdf:type schema:DefinedTerm
208 N6de50edc736a4098ae8f4c2b2b390b9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Models, Theoretical
210 rdf:type schema:DefinedTerm
211 N7fafaa15d1ed43798d511d24daa1368f rdf:first sg:person.01171226265.04
212 rdf:rest N10cf45d47107491bb20694525d3d1936
213 N8ff57799988a4d23913f76f5d7dce992 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Solutions
215 rdf:type schema:DefinedTerm
216 N9b86543047484bd0ad578233c101bf16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Solubility
218 rdf:type schema:DefinedTerm
219 N9d187e99d0084226a5bfb813cc3ca1ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Soil Pollutants
221 rdf:type schema:DefinedTerm
222 N9e7a70d38854415e910c04699e84051b rdf:first sg:person.01035455324.23
223 rdf:rest rdf:nil
224 Na1615f7410f34004900fe4d5c2fc6011 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name Temperature
226 rdf:type schema:DefinedTerm
227 Nc75e8c72465247e2944876760ea9cf11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Coordination Complexes
229 rdf:type schema:DefinedTerm
230 Ne6026c07a4934d248278795f02c07480 schema:name dimensions_id
231 schema:value pub.1036137950
232 rdf:type schema:PropertyValue
233 Nef9e044977f44e19bc4975131ad1af50 rdf:first sg:person.0767342124.30
234 rdf:rest N9e7a70d38854415e910c04699e84051b
235 Nf0a98ed48f48444b826af28a3503eb1b schema:volumeNumber 188
236 rdf:type schema:PublicationVolume
237 Nfa8ebe2b430742b6a338892d74d07067 schema:name doi
238 schema:value 10.1007/s10661-016-5685-5
239 rdf:type schema:PropertyValue
240 Nfcc0aa63a2d34c1482fb6888a7b1a731 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
241 schema:name India
242 rdf:type schema:DefinedTerm
243 Nfe286d09c79c44a99bada4768e1a08e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
244 schema:name Water
245 rdf:type schema:DefinedTerm
246 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
247 schema:name Environmental Sciences
248 rdf:type schema:DefinedTerm
249 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
250 schema:name Soil Sciences
251 rdf:type schema:DefinedTerm
252 sg:grant.7736007 http://pending.schema.org/fundedItem sg:pub.10.1007/s10661-016-5685-5
253 rdf:type schema:MonetaryGrant
254 sg:journal.1095684 schema:issn 0167-6369
255 1573-2959
256 schema:name Environmental Monitoring and Assessment
257 schema:publisher Springer Nature
258 rdf:type schema:Periodical
259 sg:person.01035455324.23 schema:affiliation grid-institutes:grid.482359.1
260 schema:familyName Boruah
261 schema:givenName Romesh Kumar
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035455324.23
263 rdf:type schema:Person
264 sg:person.01117402222.22 schema:affiliation grid-institutes:grid.463150.5
265 schema:familyName Paul
266 schema:givenName Ranjit Kumar
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117402222.22
268 rdf:type schema:Person
269 sg:person.01171226265.04 schema:affiliation grid-institutes:grid.482359.1
270 schema:familyName Karak
271 schema:givenName Tanmoy
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171226265.04
273 rdf:type schema:Person
274 sg:person.0767342124.30 schema:affiliation grid-institutes:grid.444578.e
275 schema:familyName Das
276 schema:givenName Dilip Kumar
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767342124.30
278 rdf:type schema:Person
279 sg:pub.10.1007/s10661-015-4923-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035879477
280 https://doi.org/10.1007/s10661-015-4923-6
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s11270-005-9006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027557158
283 https://doi.org/10.1007/s11270-005-9006-9
284 rdf:type schema:CreativeWork
285 grid-institutes:grid.444578.e schema:alternateName Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
286 schema:name Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
287 rdf:type schema:Organization
288 grid-institutes:grid.463150.5 schema:alternateName Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, 110012, New Delhi, India
289 schema:name Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, 110012, New Delhi, India
290 rdf:type schema:Organization
291 grid-institutes:grid.482359.1 schema:alternateName Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101, Dibrugarh, Assam, India
292 schema:name Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101, Dibrugarh, Assam, India
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...