Assessment of the spatial variability in tall wheatgrass forage using LANDSAT 8 satellite imagery to delineate potential management zones View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Pablo Cicore, João Serrano, Shakib Shahidian, Adelia Sousa, José Luis Costa, José Rafael Marques da Silva

ABSTRACT

Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-×-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2 m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3 cm height. At 500 °C day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2) = 0.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15 % for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass. More... »

PAGES

513

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-016-5512-z

DOI

http://dx.doi.org/10.1007/s10661-016-5512-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003305302

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27510986


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertilizers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Grassland", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poaceae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Satellite Imagery", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Agricultural Technology Institute", 
          "id": "https://www.grid.ac/institutes/grid.419231.c", 
          "name": [
            "Estaci\u00f3n Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnologia Agropecuaria (INTA), Ruta Nacional 226 km 73.5, C.C.276, CP 7620, Balcarce, Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cicore", 
        "givenName": "Pablo", 
        "id": "sg:person.011662064357.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011662064357.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vora", 
          "id": "https://www.grid.ac/institutes/grid.8389.a", 
          "name": [
            "Instituto de Ci\u00eancias Agr\u00e1rias e Ambientais Mediterr\u00e2nicas (ICAAM), Escola de Ci\u00eancias e Tecnologia, University of \u00c9vora, \u00c9vora, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serrano", 
        "givenName": "Jo\u00e3o", 
        "id": "sg:person.012560552411.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560552411.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vora", 
          "id": "https://www.grid.ac/institutes/grid.8389.a", 
          "name": [
            "Instituto de Ci\u00eancias Agr\u00e1rias e Ambientais Mediterr\u00e2nicas (ICAAM), Escola de Ci\u00eancias e Tecnologia, University of \u00c9vora, \u00c9vora, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahidian", 
        "givenName": "Shakib", 
        "id": "sg:person.01335760132.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335760132.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vora", 
          "id": "https://www.grid.ac/institutes/grid.8389.a", 
          "name": [
            "Instituto de Ci\u00eancias Agr\u00e1rias e Ambientais Mediterr\u00e2nicas (ICAAM), Escola de Ci\u00eancias e Tecnologia, University of \u00c9vora, \u00c9vora, Portugal", 
            "Centro de Inova\u00e7\u00e3o em Tecnologias de Informa\u00e7\u00e3o (CITI), \u00c9vora, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sousa", 
        "givenName": "Adelia", 
        "id": "sg:person.011460053627.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011460053627.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Mar del Plata", 
          "id": "https://www.grid.ac/institutes/grid.412221.6", 
          "name": [
            "Estaci\u00f3n Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnologia Agropecuaria (INTA), Ruta Nacional 226 km 73.5, C.C.276, CP 7620, Balcarce, Buenos Aires, Argentina", 
            "Faculty of Agricultural Sciences, National University of Mar del Plata (FCA-UNMdP), Balcarce, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costa", 
        "givenName": "Jos\u00e9 Luis", 
        "id": "sg:person.01043604002.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043604002.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vora", 
          "id": "https://www.grid.ac/institutes/grid.8389.a", 
          "name": [
            "Instituto de Ci\u00eancias Agr\u00e1rias e Ambientais Mediterr\u00e2nicas (ICAAM), Escola de Ci\u00eancias e Tecnologia, University of \u00c9vora, \u00c9vora, Portugal", 
            "Applied Management and Space Centre for Interdisciplinary Development and Research on Environment (DREAMS), Lisbon, Portugal", 
            "Centro de Inova\u00e7\u00e3o em Tecnologias de Informa\u00e7\u00e3o (CITI), \u00c9vora, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "da Silva", 
        "givenName": "Jos\u00e9 Rafael Marques", 
        "id": "sg:person.012644344733.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012644344733.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/01431160701408378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000829504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169408954174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001975402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.environ.041008.093740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003889517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005021461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161003743181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005082873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10705-010-9348-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010207988", 
          "https://doi.org/10.1007/s10705-010-9348-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10705-010-9348-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010207988", 
          "https://doi.org/10.1007/s10705-010-9348-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2014.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/cp10019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015727920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr020i006p00682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019698121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(88)90106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022508161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(88)90106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022508161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00096-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031931019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs61110286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033440123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2006.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033682785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl029127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(94)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(94)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eja.2008.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038724084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-011-9227-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040113324", 
          "https://doi.org/10.1007/s11119-011-9227-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs5073611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040854033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160802552751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048450342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4290(91)90040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048724755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4290(91)90040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048724755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1478997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049159218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1478997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049159218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2009.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049238120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agrojnl2006.0363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068978745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2001.1281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068994363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2004.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2013.08.0561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069032209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2001.1787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049305"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-\u00d7-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2\u00a0m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3\u00a0cm height. At 500\u00a0\u00b0C\u00a0day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2) \u00a0=\u00a00.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15\u00a0% for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-016-5512-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "188"
      }
    ], 
    "name": "Assessment of the spatial variability in tall wheatgrass forage using LANDSAT 8 satellite imagery to delineate potential management zones", 
    "pagination": "513", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fbe82aa8d41675ac448462ff6899e4ce18a1703a7f79be7bd9bdbe91a769d09"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27510986"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-016-5512-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003305302"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-016-5512-z", 
      "https://app.dimensions.ai/details/publication/pub.1003305302"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10661-016-5512-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5512-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5512-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5512-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-016-5512-z'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      63 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-016-5512-z schema:about N08eacae934f340c99426e69e25debee1
2 N17f0303ee0e3428c9d40acd3ce98e695
3 N4cd64dd0f1024dc1b6314782260228d7
4 Naa331ae39cb04f8e92506f721bcecb0f
5 Nb6b2e0bfdb1d4646a1b03ffc3e02f110
6 Nbb42db39223f4181a8b013b0cce9251c
7 Nde48524e16314e369cc450daf34df324
8 anzsrc-for:05
9 anzsrc-for:0503
10 schema:author N5f983bddf232426c8b765a826f2fd688
11 schema:citation sg:pub.10.1007/s10705-010-9348-6
12 sg:pub.10.1007/s11119-011-9227-4
13 https://doi.org/10.1016/0034-4257(88)90106-x
14 https://doi.org/10.1016/0034-4257(94)90134-1
15 https://doi.org/10.1016/0378-4290(91)90040-3
16 https://doi.org/10.1016/j.biombioe.2014.01.036
17 https://doi.org/10.1016/j.biosystemseng.2006.01.002
18 https://doi.org/10.1016/j.eja.2008.05.005
19 https://doi.org/10.1016/j.jag.2014.12.003
20 https://doi.org/10.1016/j.still.2009.12.002
21 https://doi.org/10.1016/s0034-4257(02)00096-2
22 https://doi.org/10.1029/2006gl029127
23 https://doi.org/10.1029/wr020i006p00682
24 https://doi.org/10.1071/cp10019
25 https://doi.org/10.1080/01431160701408378
26 https://doi.org/10.1080/01431160802552751
27 https://doi.org/10.1080/01431161003743181
28 https://doi.org/10.1080/01431169408954174
29 https://doi.org/10.1146/annurev.environ.041008.093740
30 https://doi.org/10.2134/agrojnl2006.0363
31 https://doi.org/10.2134/agronj2001.1281
32 https://doi.org/10.2134/agronj2004.1572
33 https://doi.org/10.2135/cropsci2013.08.0561
34 https://doi.org/10.2136/sssaj2001.1787
35 https://doi.org/10.2307/1478997
36 https://doi.org/10.3390/rs5073611
37 https://doi.org/10.3390/rs61110286
38 schema:datePublished 2016-09
39 schema:datePublishedReg 2016-09-01
40 schema:description Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-×-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2 m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3 cm height. At 500 °C day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2)  = 0.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15 % for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N6b8a25dba3d942dd98b141823253ead5
45 Na6b4744c276c475cb0ea0aa5c4d7a5e4
46 sg:journal.1095684
47 schema:name Assessment of the spatial variability in tall wheatgrass forage using LANDSAT 8 satellite imagery to delineate potential management zones
48 schema:pagination 513
49 schema:productId N2cac152d9872494ca5163483b0c8c611
50 N40667743166b41ed87d7969b01a2b1ac
51 N8561e60ab6a64bb79cf6dccf8adaeeea
52 Nc463e0425c2249c4bd5cd08f16ad7f2e
53 Nd5333e81987d4d7c94d7567fed059c0a
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003305302
55 https://doi.org/10.1007/s10661-016-5512-z
56 schema:sdDatePublished 2019-04-11T12:36
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N9721bda4ba80467d940ad94afd41a9dd
59 schema:url https://link.springer.com/10.1007%2Fs10661-016-5512-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N08eacae934f340c99426e69e25debee1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Nitrogen
65 rdf:type schema:DefinedTerm
66 N17f0303ee0e3428c9d40acd3ce98e695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Fertilizers
68 rdf:type schema:DefinedTerm
69 N2cac152d9872494ca5163483b0c8c611 schema:name readcube_id
70 schema:value 0fbe82aa8d41675ac448462ff6899e4ce18a1703a7f79be7bd9bdbe91a769d09
71 rdf:type schema:PropertyValue
72 N40667743166b41ed87d7969b01a2b1ac schema:name doi
73 schema:value 10.1007/s10661-016-5512-z
74 rdf:type schema:PropertyValue
75 N40d4b1cd97ec4d4f8966b1d60fd04aec rdf:first sg:person.011460053627.30
76 rdf:rest Na31213023e354e1bbb060a7880f3cb47
77 N4cd64dd0f1024dc1b6314782260228d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Poaceae
79 rdf:type schema:DefinedTerm
80 N5f983bddf232426c8b765a826f2fd688 rdf:first sg:person.011662064357.37
81 rdf:rest N917752b9149044858a6fae0e68e12523
82 N6b8a25dba3d942dd98b141823253ead5 schema:issueNumber 9
83 rdf:type schema:PublicationIssue
84 N8561e60ab6a64bb79cf6dccf8adaeeea schema:name pubmed_id
85 schema:value 27510986
86 rdf:type schema:PropertyValue
87 N85afa40ad3c64a929ae66cac343456e6 rdf:first sg:person.01335760132.23
88 rdf:rest N40d4b1cd97ec4d4f8966b1d60fd04aec
89 N917752b9149044858a6fae0e68e12523 rdf:first sg:person.012560552411.84
90 rdf:rest N85afa40ad3c64a929ae66cac343456e6
91 N9721bda4ba80467d940ad94afd41a9dd schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Na2ddd4e5dd194cb2a37f2cb128706cbe rdf:first sg:person.012644344733.66
94 rdf:rest rdf:nil
95 Na31213023e354e1bbb060a7880f3cb47 rdf:first sg:person.01043604002.63
96 rdf:rest Na2ddd4e5dd194cb2a37f2cb128706cbe
97 Na6b4744c276c475cb0ea0aa5c4d7a5e4 schema:volumeNumber 188
98 rdf:type schema:PublicationVolume
99 Naa331ae39cb04f8e92506f721bcecb0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Grassland
101 rdf:type schema:DefinedTerm
102 Nb6b2e0bfdb1d4646a1b03ffc3e02f110 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Phosphorus
104 rdf:type schema:DefinedTerm
105 Nbb42db39223f4181a8b013b0cce9251c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Satellite Imagery
107 rdf:type schema:DefinedTerm
108 Nc463e0425c2249c4bd5cd08f16ad7f2e schema:name dimensions_id
109 schema:value pub.1003305302
110 rdf:type schema:PropertyValue
111 Nd5333e81987d4d7c94d7567fed059c0a schema:name nlm_unique_id
112 schema:value 8508350
113 rdf:type schema:PropertyValue
114 Nde48524e16314e369cc450daf34df324 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Biomass
116 rdf:type schema:DefinedTerm
117 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
118 schema:name Environmental Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
121 schema:name Soil Sciences
122 rdf:type schema:DefinedTerm
123 sg:journal.1095684 schema:issn 0167-6369
124 1573-2959
125 schema:name Environmental Monitoring and Assessment
126 rdf:type schema:Periodical
127 sg:person.01043604002.63 schema:affiliation https://www.grid.ac/institutes/grid.412221.6
128 schema:familyName Costa
129 schema:givenName José Luis
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043604002.63
131 rdf:type schema:Person
132 sg:person.011460053627.30 schema:affiliation https://www.grid.ac/institutes/grid.8389.a
133 schema:familyName Sousa
134 schema:givenName Adelia
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011460053627.30
136 rdf:type schema:Person
137 sg:person.011662064357.37 schema:affiliation https://www.grid.ac/institutes/grid.419231.c
138 schema:familyName Cicore
139 schema:givenName Pablo
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011662064357.37
141 rdf:type schema:Person
142 sg:person.012560552411.84 schema:affiliation https://www.grid.ac/institutes/grid.8389.a
143 schema:familyName Serrano
144 schema:givenName João
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560552411.84
146 rdf:type schema:Person
147 sg:person.012644344733.66 schema:affiliation https://www.grid.ac/institutes/grid.8389.a
148 schema:familyName da Silva
149 schema:givenName José Rafael Marques
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012644344733.66
151 rdf:type schema:Person
152 sg:person.01335760132.23 schema:affiliation https://www.grid.ac/institutes/grid.8389.a
153 schema:familyName Shahidian
154 schema:givenName Shakib
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335760132.23
156 rdf:type schema:Person
157 sg:pub.10.1007/s10705-010-9348-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010207988
158 https://doi.org/10.1007/s10705-010-9348-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s11119-011-9227-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040113324
161 https://doi.org/10.1007/s11119-011-9227-4
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0034-4257(88)90106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022508161
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0034-4257(94)90134-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036317833
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0378-4290(91)90040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048724755
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.biombioe.2014.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013508643
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.biosystemseng.2006.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033682785
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.eja.2008.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038724084
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jag.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005021461
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.still.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049238120
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0034-4257(02)00096-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031931019
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1029/2006gl029127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928215
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1029/wr020i006p00682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019698121
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1071/cp10019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015727920
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/01431160701408378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000829504
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/01431160802552751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048450342
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/01431161003743181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082873
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01431169408954174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001975402
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1146/annurev.environ.041008.093740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003889517
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2134/agrojnl2006.0363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068978745
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2134/agronj2001.1281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994363
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2134/agronj2004.1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995219
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2135/cropsci2013.08.0561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069032209
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2136/sssaj2001.1787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049305
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2307/1478997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049159218
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3390/rs5073611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040854033
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3390/rs61110286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033440123
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.412221.6 schema:alternateName National University of Mar del Plata
214 schema:name Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnologia Agropecuaria (INTA), Ruta Nacional 226 km 73.5, C.C.276, CP 7620, Balcarce, Buenos Aires, Argentina
215 Faculty of Agricultural Sciences, National University of Mar del Plata (FCA-UNMdP), Balcarce, Argentina
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.419231.c schema:alternateName National Agricultural Technology Institute
218 schema:name Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnologia Agropecuaria (INTA), Ruta Nacional 226 km 73.5, C.C.276, CP 7620, Balcarce, Buenos Aires, Argentina
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.8389.a schema:alternateName University of Évora
221 schema:name Applied Management and Space Centre for Interdisciplinary Development and Research on Environment (DREAMS), Lisbon, Portugal
222 Centro de Inovação em Tecnologias de Informação (CITI), Évora, Portugal
223 Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Escola de Ciências e Tecnologia, University of Évora, Évora, Portugal
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...