Simultaneous spectrophotometric determination of Cu2+, Hg2+, and Cd2+ ions using 2-(3-hydroxy-1-methylbut-2-enylideneamino)pyridine-3-ol View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Maryam Abbasi Tarighat, Khosro Mohammadi

ABSTRACT

New complexes of Cu2+, Hg2+, and Cd2+ with a recently synthesized Schiff base derived from 2-(3-hydroxy-1-methylbut-2-enylideneamino)pyridine-3-ol were applied for their simultaneous determination with artificial neural networks. A new analytical method using principal component-feed forward neural networks (PC-FFNNs) and principal component-radial basis function networks (PC-RBFNs) was used. Spectral data was reduced using principal component analysis and subjected to ANNs. The data obtained from synthetic mixtures of metal ions were processed by PC-FFNNs and PC-RBFNs. Performances of the proposed methods were tested with regard to relative standard error of prediction. Limit of detections and limit of quantifications were determined. The results obtained by PC-FFNNs and PC-RBFNs were compared to each other. Under the working conditions, the proposed methods were successfully applied to simultaneous determination of Hg2+, Cu2+, and Cd2+ in different water and soil samples. Concentrations of metal ions in the samples were also determined by flame atomic absorption spectrometry (FAAS) and standard addition method. The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS and standard addition method. More... »

PAGES

197

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-015-4411-z

DOI

http://dx.doi.org/10.1007/s10661-015-4411-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016914045

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25792026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cations, Divalent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals, Heavy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Schiff Bases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrophotometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrophotometry, Atomic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarighat", 
        "givenName": "Maryam Abbasi", 
        "id": "sg:person.011066653155.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066653155.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammadi", 
        "givenName": "Khosro", 
        "id": "sg:person.0636547105.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636547105.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jare.2013.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004959890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2008.07.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009295825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fct.2010.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009335524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11802-010-1699-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010060900", 
          "https://doi.org/10.1007/s11802-010-1699-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sab.2009.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022998178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sab.2007.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026354931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2008.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027171836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microc.2012.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027297330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2012.09.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027551163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2008.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033110515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2007.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033973246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2005.08.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035592896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2011.07.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039000562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040341893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2011.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044369101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00874-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049417627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00874-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049417627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2007.12.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053106225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf402186y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055912999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15533174.2011.610769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058403937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077851681", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/9781847559661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109365625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-04", 
    "datePublishedReg": "2015-04-01", 
    "description": "New complexes of Cu2+, Hg2+, and Cd2+ with a recently synthesized Schiff base derived from 2-(3-hydroxy-1-methylbut-2-enylideneamino)pyridine-3-ol were applied for their simultaneous determination with artificial neural networks. A new analytical method using principal component-feed forward neural networks (PC-FFNNs) and principal component-radial basis function networks (PC-RBFNs) was used. Spectral data was reduced using principal component analysis and subjected to ANNs. The data obtained from synthetic mixtures of metal ions were processed by PC-FFNNs and PC-RBFNs. Performances of the proposed methods were tested with regard to relative standard error of prediction. Limit of detections and limit of quantifications were determined. The results obtained by PC-FFNNs and PC-RBFNs were compared to each other. Under the working conditions, the proposed methods were successfully applied to simultaneous determination of Hg2+, Cu2+, and Cd2+ in different water and soil samples. Concentrations of metal ions in the samples were also determined by flame atomic absorption spectrometry (FAAS) and standard addition method. The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS and standard addition method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-015-4411-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "187"
      }
    ], 
    "name": "Simultaneous spectrophotometric determination of Cu2+, Hg2+, and Cd2+ ions using 2-(3-hydroxy-1-methylbut-2-enylideneamino)pyridine-3-ol", 
    "pagination": "197", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50963c3a0d2bbae58b1816da5d1c58bcf903a2251531bfc901a987bb5ca98225"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25792026"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-015-4411-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016914045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-015-4411-z", 
      "https://app.dimensions.ai/details/publication/pub.1016914045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10661-015-4411-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-015-4411-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-015-4411-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-015-4411-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-015-4411-z'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      58 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-015-4411-z schema:about N4be5757ae57e40f7bb8cfdfedfca44b3
2 N517c89d7d9ee4674a99d8a1d04335923
3 N68b51eeb4f3149b890f40bb6645a371a
4 N7a6f24a5bec9490b9e2b1d1b9aefe130
5 N84e0840957274326a3e772e7951bcda5
6 Na07e51c4887348028bc2570eb86af273
7 Nb94d8eb72a8d4ea6b63927d31ee609e9
8 Nf8710cfd43b2463796719bb0d474daf2
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N27cd69efae3e47eba84bb23c4366f6a5
12 schema:citation sg:pub.10.1007/s11802-010-1699-8
13 https://app.dimensions.ai/details/publication/pub.1077851681
14 https://doi.org/10.1016/j.fct.2010.07.034
15 https://doi.org/10.1016/j.foodchem.2007.12.078
16 https://doi.org/10.1016/j.foodchem.2011.07.070
17 https://doi.org/10.1016/j.foodchem.2012.09.099
18 https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.010
19 https://doi.org/10.1016/j.jare.2013.11.003
20 https://doi.org/10.1016/j.microc.2012.03.010
21 https://doi.org/10.1016/j.saa.2011.06.014
22 https://doi.org/10.1016/j.sab.2007.12.010
23 https://doi.org/10.1016/j.sab.2009.11.009
24 https://doi.org/10.1016/j.talanta.2005.08.038
25 https://doi.org/10.1016/j.talanta.2007.10.040
26 https://doi.org/10.1016/j.talanta.2008.07.065
27 https://doi.org/10.1016/j.talanta.2008.08.008
28 https://doi.org/10.1016/j.talanta.2008.11.032
29 https://doi.org/10.1016/s0003-2670(03)00874-2
30 https://doi.org/10.1021/jf402186y
31 https://doi.org/10.1039/9781847559661
32 https://doi.org/10.1080/15533174.2011.610769
33 schema:datePublished 2015-04
34 schema:datePublishedReg 2015-04-01
35 schema:description New complexes of Cu2+, Hg2+, and Cd2+ with a recently synthesized Schiff base derived from 2-(3-hydroxy-1-methylbut-2-enylideneamino)pyridine-3-ol were applied for their simultaneous determination with artificial neural networks. A new analytical method using principal component-feed forward neural networks (PC-FFNNs) and principal component-radial basis function networks (PC-RBFNs) was used. Spectral data was reduced using principal component analysis and subjected to ANNs. The data obtained from synthetic mixtures of metal ions were processed by PC-FFNNs and PC-RBFNs. Performances of the proposed methods were tested with regard to relative standard error of prediction. Limit of detections and limit of quantifications were determined. The results obtained by PC-FFNNs and PC-RBFNs were compared to each other. Under the working conditions, the proposed methods were successfully applied to simultaneous determination of Hg2+, Cu2+, and Cd2+ in different water and soil samples. Concentrations of metal ions in the samples were also determined by flame atomic absorption spectrometry (FAAS) and standard addition method. The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS and standard addition method.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N639c2c9e3f5b481ba257ca460ced12cc
40 N80ab23997ac84f0cb08ff3ce2a48dded
41 sg:journal.1095684
42 schema:name Simultaneous spectrophotometric determination of Cu2+, Hg2+, and Cd2+ ions using 2-(3-hydroxy-1-methylbut-2-enylideneamino)pyridine-3-ol
43 schema:pagination 197
44 schema:productId N48c5614a36604f62b160a7cc548618cf
45 N5ed9ad7a32624011830f4fad00bbe62a
46 Nab117138640646f0a3cce123f039b227
47 Nadca41104f2449aa9a5a8c1840c3043a
48 Neebe0de1712c431dbe76bbd61b4e7c7b
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016914045
50 https://doi.org/10.1007/s10661-015-4411-z
51 schema:sdDatePublished 2019-04-10T22:44
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ncd14312339cc45d59df3d4d9f4776933
54 schema:url http://link.springer.com/10.1007%2Fs10661-015-4411-z
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1f5caf379d114651bd56e842e89323c1 rdf:first sg:person.0636547105.52
59 rdf:rest rdf:nil
60 N27cd69efae3e47eba84bb23c4366f6a5 rdf:first sg:person.011066653155.48
61 rdf:rest N1f5caf379d114651bd56e842e89323c1
62 N48c5614a36604f62b160a7cc548618cf schema:name pubmed_id
63 schema:value 25792026
64 rdf:type schema:PropertyValue
65 N4be5757ae57e40f7bb8cfdfedfca44b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Neural Networks (Computer)
67 rdf:type schema:DefinedTerm
68 N517c89d7d9ee4674a99d8a1d04335923 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Schiff Bases
70 rdf:type schema:DefinedTerm
71 N5ed9ad7a32624011830f4fad00bbe62a schema:name dimensions_id
72 schema:value pub.1016914045
73 rdf:type schema:PropertyValue
74 N639c2c9e3f5b481ba257ca460ced12cc schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 N68b51eeb4f3149b890f40bb6645a371a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Spectrophotometry
78 rdf:type schema:DefinedTerm
79 N7a6f24a5bec9490b9e2b1d1b9aefe130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Cations, Divalent
81 rdf:type schema:DefinedTerm
82 N80ab23997ac84f0cb08ff3ce2a48dded schema:volumeNumber 187
83 rdf:type schema:PublicationVolume
84 N84e0840957274326a3e772e7951bcda5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Principal Component Analysis
86 rdf:type schema:DefinedTerm
87 Na07e51c4887348028bc2570eb86af273 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Environmental Monitoring
89 rdf:type schema:DefinedTerm
90 Nab117138640646f0a3cce123f039b227 schema:name nlm_unique_id
91 schema:value 8508350
92 rdf:type schema:PropertyValue
93 Nadca41104f2449aa9a5a8c1840c3043a schema:name readcube_id
94 schema:value 50963c3a0d2bbae58b1816da5d1c58bcf903a2251531bfc901a987bb5ca98225
95 rdf:type schema:PropertyValue
96 Nb94d8eb72a8d4ea6b63927d31ee609e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Metals, Heavy
98 rdf:type schema:DefinedTerm
99 Ncd14312339cc45d59df3d4d9f4776933 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Neebe0de1712c431dbe76bbd61b4e7c7b schema:name doi
102 schema:value 10.1007/s10661-015-4411-z
103 rdf:type schema:PropertyValue
104 Nf8710cfd43b2463796719bb0d474daf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Spectrophotometry, Atomic
106 rdf:type schema:DefinedTerm
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:journal.1095684 schema:issn 0167-6369
114 1573-2959
115 schema:name Environmental Monitoring and Assessment
116 rdf:type schema:Periodical
117 sg:person.011066653155.48 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
118 schema:familyName Tarighat
119 schema:givenName Maryam Abbasi
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066653155.48
121 rdf:type schema:Person
122 sg:person.0636547105.52 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
123 schema:familyName Mohammadi
124 schema:givenName Khosro
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636547105.52
126 rdf:type schema:Person
127 sg:pub.10.1007/s11802-010-1699-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010060900
128 https://doi.org/10.1007/s11802-010-1699-8
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1077851681 schema:CreativeWork
131 https://doi.org/10.1016/j.fct.2010.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009335524
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.foodchem.2007.12.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053106225
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.foodchem.2011.07.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039000562
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.foodchem.2012.09.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027551163
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040341893
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jare.2013.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004959890
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.microc.2012.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027297330
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.saa.2011.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044369101
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.sab.2007.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026354931
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.sab.2009.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022998178
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.talanta.2005.08.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035592896
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.talanta.2007.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033973246
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.talanta.2008.07.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009295825
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.talanta.2008.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027171836
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.talanta.2008.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033110515
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0003-2670(03)00874-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049417627
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/jf402186y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055912999
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1039/9781847559661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109365625
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/15533174.2011.610769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058403937
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
170 schema:name Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169, Bushehr, Iran
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...