An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Youngsang Kwon, Chris P. S. Larsen

ABSTRACT

Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson's correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km(2). This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km(2). More... »

PAGES

7263-7277

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-013-3099-1

DOI

http://dx.doi.org/10.1007/s10661-013-3099-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016342097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23371248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Satellite Imagery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delaware", 
          "id": "https://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Department of Geography, University of Delaware, 125 Academy Street, 19716, Newark, DE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Youngsang", 
        "id": "sg:person.0745042323.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745042323.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "Department of Geography, University at Buffalo, The State University of New York, 14261, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larsen", 
        "givenName": "Chris P. S.", 
        "id": "sg:person.014134166277.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134166277.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2006.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000604288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001228831", 
          "https://doi.org/10.1007/bf00131535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001228831", 
          "https://doi.org/10.1007/bf00131535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s90301768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001963543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002391246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2010.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003758859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5427.574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004725702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0033-0124.1993.00001.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012665704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014520842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-009-1226-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014618339", 
          "https://doi.org/10.1007/s10661-009-1226-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-009-1226-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014618339", 
          "https://doi.org/10.1007/s10661-009-1226-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100219900102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016601568", 
          "https://doi.org/10.1007/s100219900102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/es10-00087.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016817230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017079291", 
          "https://doi.org/10.1007/bf02447512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017079291", 
          "https://doi.org/10.1007/bf02447512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1559/152304092783786636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018429778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160500486732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020627090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027150898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2486.2003.00629.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028018341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-008-9462-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029436722", 
          "https://doi.org/10.1007/s10584-008-9462-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-008-9462-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029436722", 
          "https://doi.org/10.1007/s10584-008-9462-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029756623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(96)83709-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033194139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1192666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033845626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1192666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033845626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jg000004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034205768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jg000004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034205768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/05-0247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035644474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2009.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036741244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2004.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037394779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(2001)011[1174:baneft]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037845203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10824000009480529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038606381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2012.680615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038959833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1977.0140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039498064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07038992.1999.10874736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040392606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041673769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2004.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041903085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1127(97)00248-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043997581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013101931793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045842862", 
          "https://doi.org/10.1023/a:1013101931793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl025879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049037523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0962-6298(99)00047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/ei137.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052852884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(1999)009[0968:spoapa]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053021909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0143116031000150013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058294402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2003.816587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.853936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1199169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062463028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502760047140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1505/ifor.11.3.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067507912"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson's correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km(2). This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km(2).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-013-3099-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "185"
      }
    ], 
    "name": "An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA", 
    "pagination": "7263-7277", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ddd888a62fb24a3dceb6a72d91c3dcb8d1b4cbe363c47e224840f19b035fcdc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23371248"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-013-3099-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016342097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-013-3099-1", 
      "https://app.dimensions.ai/details/publication/pub.1016342097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10661-013-3099-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-013-3099-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-013-3099-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-013-3099-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-013-3099-1'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      79 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-013-3099-1 schema:about N341146099f32407da647d06866b7d615
2 N36ec35b9fc5b4c77a9c58dc318c8c35f
3 N4a96af422249405ca4a481af4e92b281
4 N8108cf1509924aebb13d0483a126e493
5 N8e272f3ec681442d9baeada910d3b77c
6 N94d1497c4dac47688e89bc5412a0bd7a
7 anzsrc-for:09
8 anzsrc-for:0909
9 schema:author N8ebe69cd25044786acfbc1408354246d
10 schema:citation sg:pub.10.1007/bf00131535
11 sg:pub.10.1007/bf02447512
12 sg:pub.10.1007/s100219900102
13 sg:pub.10.1007/s10584-008-9462-5
14 sg:pub.10.1007/s10661-009-1226-9
15 sg:pub.10.1023/a:1013101931793
16 https://doi.org/10.1016/0304-3800(96)83709-4
17 https://doi.org/10.1016/j.foreco.2009.05.036
18 https://doi.org/10.1016/j.rse.2004.02.007
19 https://doi.org/10.1016/j.rse.2004.12.011
20 https://doi.org/10.1016/j.rse.2005.02.016
21 https://doi.org/10.1016/j.rse.2006.02.017
22 https://doi.org/10.1016/j.rse.2006.06.008
23 https://doi.org/10.1016/j.rse.2006.10.011
24 https://doi.org/10.1016/j.rse.2007.03.032
25 https://doi.org/10.1016/j.rse.2007.08.021
26 https://doi.org/10.1016/j.rse.2010.05.010
27 https://doi.org/10.1016/s0378-1127(97)00248-x
28 https://doi.org/10.1016/s0962-6298(99)00047-5
29 https://doi.org/10.1029/2004jg000004
30 https://doi.org/10.1029/2006gl025879
31 https://doi.org/10.1046/j.1365-2486.2003.00629.x
32 https://doi.org/10.1080/0143116031000150013
33 https://doi.org/10.1080/01431160500486732
34 https://doi.org/10.1080/01431161.2012.680615
35 https://doi.org/10.1080/07038992.1999.10874736
36 https://doi.org/10.1080/10824000009480529
37 https://doi.org/10.1098/rstb.1977.0140
38 https://doi.org/10.1109/tgrs.2003.816587
39 https://doi.org/10.1109/tgrs.2005.853936
40 https://doi.org/10.1111/j.0033-0124.1993.00001.x
41 https://doi.org/10.1126/science.1192666
42 https://doi.org/10.1126/science.1199169
43 https://doi.org/10.1126/science.285.5427.574
44 https://doi.org/10.1175/ei137.1
45 https://doi.org/10.1198/016214502760047140
46 https://doi.org/10.1505/ifor.11.3.331
47 https://doi.org/10.1559/152304092783786636
48 https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2
49 https://doi.org/10.1890/05-0247
50 https://doi.org/10.1890/1051-0761(1999)009[0968:spoapa]2.0.co;2
51 https://doi.org/10.1890/1051-0761(2001)011[1174:baneft]2.0.co;2
52 https://doi.org/10.1890/es10-00087.1
53 https://doi.org/10.3390/s90301768
54 schema:datePublished 2013-09
55 schema:datePublishedReg 2013-09-01
56 schema:description Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson's correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km(2). This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km(2).
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N415a2a6d60e641ac92d848e875fdf5af
61 N9266ac43c072439e8cb4924ffbe3deda
62 sg:journal.1095684
63 schema:name An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA
64 schema:pagination 7263-7277
65 schema:productId N28d8836a51cb4c73acfb7483d870ab70
66 N3e742bbbcd314f069c7d42176e55ecef
67 N6b6a046766f249a78f7f492b1b5f97e6
68 N79ebf74161e64107b6520be6228ee2ce
69 Ncc3509d949e64fba8b15addf05b4d0c0
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016342097
71 https://doi.org/10.1007/s10661-013-3099-1
72 schema:sdDatePublished 2019-04-10T13:16
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N3ab43b72cfcc4a369b6758cbe454f1f8
75 schema:url http://link.springer.com/10.1007%2Fs10661-013-3099-1
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N28d8836a51cb4c73acfb7483d870ab70 schema:name dimensions_id
80 schema:value pub.1016342097
81 rdf:type schema:PropertyValue
82 N341146099f32407da647d06866b7d615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Environmental Monitoring
84 rdf:type schema:DefinedTerm
85 N36ec35b9fc5b4c77a9c58dc318c8c35f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Satellite Imagery
87 rdf:type schema:DefinedTerm
88 N3ab43b72cfcc4a369b6758cbe454f1f8 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N3e742bbbcd314f069c7d42176e55ecef schema:name nlm_unique_id
91 schema:value 8508350
92 rdf:type schema:PropertyValue
93 N415a2a6d60e641ac92d848e875fdf5af schema:issueNumber 9
94 rdf:type schema:PublicationIssue
95 N4a96af422249405ca4a481af4e92b281 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Trees
97 rdf:type schema:DefinedTerm
98 N6b6a046766f249a78f7f492b1b5f97e6 schema:name pubmed_id
99 schema:value 23371248
100 rdf:type schema:PropertyValue
101 N79ebf74161e64107b6520be6228ee2ce schema:name doi
102 schema:value 10.1007/s10661-013-3099-1
103 rdf:type schema:PropertyValue
104 N8108cf1509924aebb13d0483a126e493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Theoretical
106 rdf:type schema:DefinedTerm
107 N8e272f3ec681442d9baeada910d3b77c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name United States
109 rdf:type schema:DefinedTerm
110 N8ebe69cd25044786acfbc1408354246d rdf:first sg:person.0745042323.06
111 rdf:rest Neee3c9d1425a4d849f1e0c23ef8c2deb
112 N9266ac43c072439e8cb4924ffbe3deda schema:volumeNumber 185
113 rdf:type schema:PublicationVolume
114 N94d1497c4dac47688e89bc5412a0bd7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Biomass
116 rdf:type schema:DefinedTerm
117 Ncc3509d949e64fba8b15addf05b4d0c0 schema:name readcube_id
118 schema:value 4ddd888a62fb24a3dceb6a72d91c3dcb8d1b4cbe363c47e224840f19b035fcdc
119 rdf:type schema:PropertyValue
120 Neee3c9d1425a4d849f1e0c23ef8c2deb rdf:first sg:person.014134166277.43
121 rdf:rest rdf:nil
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
126 schema:name Geomatic Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1095684 schema:issn 0167-6369
129 1573-2959
130 schema:name Environmental Monitoring and Assessment
131 rdf:type schema:Periodical
132 sg:person.014134166277.43 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
133 schema:familyName Larsen
134 schema:givenName Chris P. S.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134166277.43
136 rdf:type schema:Person
137 sg:person.0745042323.06 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
138 schema:familyName Kwon
139 schema:givenName Youngsang
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745042323.06
141 rdf:type schema:Person
142 sg:pub.10.1007/bf00131535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001228831
143 https://doi.org/10.1007/bf00131535
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf02447512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017079291
146 https://doi.org/10.1007/bf02447512
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s100219900102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016601568
149 https://doi.org/10.1007/s100219900102
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10584-008-9462-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029436722
152 https://doi.org/10.1007/s10584-008-9462-5
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10661-009-1226-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014618339
155 https://doi.org/10.1007/s10661-009-1226-9
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/a:1013101931793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045842862
158 https://doi.org/10.1023/a:1013101931793
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0304-3800(96)83709-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033194139
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.foreco.2009.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036741244
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.rse.2004.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037394779
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.rse.2004.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041903085
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.rse.2005.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027150898
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.rse.2006.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002391246
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.rse.2006.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000604288
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.rse.2006.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029756623
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.rse.2007.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041673769
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.rse.2007.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014520842
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.rse.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003758859
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0378-1127(97)00248-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043997581
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0962-6298(99)00047-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049332966
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1029/2004jg000004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034205768
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1029/2006gl025879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049037523
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1046/j.1365-2486.2003.00629.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028018341
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/0143116031000150013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058294402
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/01431160500486732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020627090
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/01431161.2012.680615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038959833
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/07038992.1999.10874736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040392606
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/10824000009480529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038606381
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1098/rstb.1977.0140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039498064
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/tgrs.2003.816587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608960
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tgrs.2005.853936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609532
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.0033-0124.1993.00001.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012665704
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1192666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033845626
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1199169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062463028
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.285.5427.574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004725702
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/ei137.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052852884
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1198/016214502760047140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198020
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1505/ifor.11.3.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067507912
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1559/152304092783786636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018429778
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087221
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1890/05-0247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035644474
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1890/1051-0761(1999)009[0968:spoapa]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053021909
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1890/1051-0761(2001)011[1174:baneft]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037845203
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1890/es10-00087.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016817230
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3390/s90301768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963543
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
237 schema:name Department of Geography, University at Buffalo, The State University of New York, 14261, Buffalo, NY, USA
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
240 schema:name Department of Geography, University of Delaware, 125 Academy Street, 19716, Newark, DE, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...