Assessment Of Potential Atmospheric Transport And Deposition Patterns Due To Russian Pacific Fleet Operations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

A. G. MAHURA, A. A. BAKLANOV, J. H. SØRENSEN, F. L. PARKER, V. NOVIKOV, K. BROWN, K. L. COMPTON

ABSTRACT

A probabilistic analysis of atmospheric transport and deposition patterns from two nuclear risk sites-Kamchatka and Vladivostok-situated in the Russian Far East to countries and geographical regions of interest (Japan, China, North and South Koreas, territories of the Russian Far East, State of Alaska, and Aleutian Chain Islands, US) was performed. The main questions addressed were the following: Which geographical territories are at the highest risk from hypothetical releases at these sites? What are the probabilities for radionuclide atmospheric transport and deposition on different neighboring countries in case of accidents at the sites? For analysis, several research tools developed within the Arctic Risk Project were applied: (1) isentropic trajectory model to calculate a multiyear dataset of 5-day forward trajectories that originated over the site locations at various altitudes; (2) DERMA long-range transport model to simulate 5-day atmospheric transport, dispersion, and deposition of 137Cs for 1-day release (at the rate of 10(10) Bq/s); and (3) a set of statistical methods (including exploratory, cluster, and probability fields analyses) for evaluation of trajectory and dispersion modeling results. The possible impact (on annual, seasonal, and monthly basis) of selected risk sites on neighboring geographical regions is evaluated using a set of various indicators. For trajectory modeling, the indicators examined are: (1) atmospheric transport pathways, (2) airflow probability fields, (3) fast transport probability fields, (4) maximum possible impact zone, (5) maximum reaching distance, and (6) typical transport time fields. For dispersion modeling, the indicators examined are: (1) time integrated air concentration, (2) dry deposition, and (3) wet deposition. It was found for both sites that within the boundary layer the westerly flows are dominant throughout the year (more than 60% of the time), increasing with altitude of free troposphere up to 85% of the time. For the Kamchatka site, the US regions are at the highest risk with the average times of atmospheric transport ranging from 3 to 5.1 days and depositions of 10(-1) Bq/m2 and lower. For the Vladivostok site, the northern China and Japan regions are at the highest risk with the average times of atmospheric transport of 0.5 and 1.6 days, respectively, and depositions ranging from 10(0) to 10(+2) Bq/m2. The areas of maximum potentially impacted zones are 30 x 10(4) km2 and 25 x 10(4) km2 for the Kamchatka and Vladivostok sites, respectively. More... »

PAGES

261-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10661-005-0295-7

DOI

http://dx.doi.org/10.1007/s10661-005-0295-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021955768

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15739268


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Movements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollutants, Radioactive", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atmosphere", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Warfare", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pacific Ocean", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radioactive Fallout", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Russia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute", 
          "id": "https://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria", 
            "Danish Meteorological Institute, DMI, Copenhagen, Denmark", 
            "Institute of Northern Environmental Problems, INEP, Kola Science Center, Apatity, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MAHURA", 
        "givenName": "A. G.", 
        "id": "sg:person.07467717125.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467717125.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute", 
          "id": "https://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute, DMI, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BAKLANOV", 
        "givenName": "A. A.", 
        "id": "sg:person.016055170117.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055170117.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute", 
          "id": "https://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute, DMI, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00d8RENSEN", 
        "givenName": "J. H.", 
        "id": "sg:person.0576404275.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576404275.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria", 
            "Vanderbilt University, Nashville, Tennessee, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "PARKER", 
        "givenName": "F. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kurchatov Institute", 
          "id": "https://www.grid.ac/institutes/grid.18919.38", 
          "name": [
            "International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria", 
            "Kurchatov Institute, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "NOVIKOV", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Applied Systems Analysis", 
          "id": "https://www.grid.ac/institutes/grid.75276.31", 
          "name": [
            "International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BROWN", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Applied Systems Analysis", 
          "id": "https://www.grid.ac/institutes/grid.75276.31", 
          "name": [
            "International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "COMPTON", 
        "givenName": "K. L.", 
        "id": "sg:person.0632137462.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632137462.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1352-2310(98)00183-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001538908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(98)00178-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007260805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011323021288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007708067", 
          "https://doi.org/10.1023/a:1011323021288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/18811248.1994.9735247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007747636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9781315071602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024072584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(99)00168-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029601277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011359727500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029655598", 
          "https://doi.org/10.1023/a:1011359727500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0265-931x(01)00094-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031371143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-4-485-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032886822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-4-485-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032886822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1986)114<0571:toltai>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036125880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1464-1909(01)00087-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051203875"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "A probabilistic analysis of atmospheric transport and deposition patterns from two nuclear risk sites-Kamchatka and Vladivostok-situated in the Russian Far East to countries and geographical regions of interest (Japan, China, North and South Koreas, territories of the Russian Far East, State of Alaska, and Aleutian Chain Islands, US) was performed. The main questions addressed were the following: Which geographical territories are at the highest risk from hypothetical releases at these sites? What are the probabilities for radionuclide atmospheric transport and deposition on different neighboring countries in case of accidents at the sites? For analysis, several research tools developed within the Arctic Risk Project were applied: (1) isentropic trajectory model to calculate a multiyear dataset of 5-day forward trajectories that originated over the site locations at various altitudes; (2) DERMA long-range transport model to simulate 5-day atmospheric transport, dispersion, and deposition of 137Cs for 1-day release (at the rate of 10(10) Bq/s); and (3) a set of statistical methods (including exploratory, cluster, and probability fields analyses) for evaluation of trajectory and dispersion modeling results. The possible impact (on annual, seasonal, and monthly basis) of selected risk sites on neighboring geographical regions is evaluated using a set of various indicators. For trajectory modeling, the indicators examined are: (1) atmospheric transport pathways, (2) airflow probability fields, (3) fast transport probability fields, (4) maximum possible impact zone, (5) maximum reaching distance, and (6) typical transport time fields. For dispersion modeling, the indicators examined are: (1) time integrated air concentration, (2) dry deposition, and (3) wet deposition. It was found for both sites that within the boundary layer the westerly flows are dominant throughout the year (more than 60% of the time), increasing with altitude of free troposphere up to 85% of the time. For the Kamchatka site, the US regions are at the highest risk with the average times of atmospheric transport ranging from 3 to 5.1 days and depositions of 10(-1) Bq/m2 and lower. For the Vladivostok site, the northern China and Japan regions are at the highest risk with the average times of atmospheric transport of 0.5 and 1.6 days, respectively, and depositions ranging from 10(0) to 10(+2) Bq/m2. The areas of maximum potentially impacted zones are 30 x 10(4) km2 and 25 x 10(4) km2 for the Kamchatka and Vladivostok sites, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10661-005-0295-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "name": "ASSESSMENT OF POTENTIAL ATMOSPHERIC TRANSPORT AND DEPOSITION PATTERNS DUE TO RUSSIAN PACIFIC FLEET OPERATIONS", 
    "pagination": "261-287", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10661-005-0295-7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6899e48787a7f40cb13fca60a57eae6deaf560108476e0ff2a3ff128072565ea"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021955768"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15739268"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10661-005-0295-7", 
      "https://app.dimensions.ai/details/publication/pub.1021955768"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56190_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10661-005-0295-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10661-005-0295-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10661-005-0295-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10661-005-0295-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10661-005-0295-7'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      49 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10661-005-0295-7 schema:about N2a087313878149ae88f6755ab58183ee
2 N38d6504922f84492848f56af4cb7865f
3 N52418a4058854db980fedc9a2cdf09a2
4 N5755d9c8a7984254956c77c470caff60
5 N9526fd604f2e4bcd973daf92d5d3f01b
6 Nc8b6f85024f54ecc9618764510812447
7 Nd8047dd590fb4a31bbbfd3e6151efbf6
8 Nea31e86721dd46cb8cba1fbc5ecf25f6
9 Nedc27ebb29cc4b8fa6767b5402dd490c
10 anzsrc-for:14
11 anzsrc-for:1402
12 schema:author N18fcfdb800f0470c9063e5a8c5eff8cb
13 schema:citation sg:pub.10.1023/a:1011323021288
14 sg:pub.10.1023/a:1011359727500
15 https://doi.org/10.1016/s0265-931x(01)00094-7
16 https://doi.org/10.1016/s1352-2310(98)00178-2
17 https://doi.org/10.1016/s1352-2310(98)00183-6
18 https://doi.org/10.1016/s1352-2310(99)00168-5
19 https://doi.org/10.1016/s1464-1909(01)00087-9
20 https://doi.org/10.1080/18811248.1994.9735247
21 https://doi.org/10.1175/1520-0493(1986)114<0571:toltai>2.0.co;2
22 https://doi.org/10.4324/9781315071602
23 https://doi.org/10.5194/acp-4-485-2004
24 schema:datePublished 2005-01
25 schema:datePublishedReg 2005-01-01
26 schema:description A probabilistic analysis of atmospheric transport and deposition patterns from two nuclear risk sites-Kamchatka and Vladivostok-situated in the Russian Far East to countries and geographical regions of interest (Japan, China, North and South Koreas, territories of the Russian Far East, State of Alaska, and Aleutian Chain Islands, US) was performed. The main questions addressed were the following: Which geographical territories are at the highest risk from hypothetical releases at these sites? What are the probabilities for radionuclide atmospheric transport and deposition on different neighboring countries in case of accidents at the sites? For analysis, several research tools developed within the Arctic Risk Project were applied: (1) isentropic trajectory model to calculate a multiyear dataset of 5-day forward trajectories that originated over the site locations at various altitudes; (2) DERMA long-range transport model to simulate 5-day atmospheric transport, dispersion, and deposition of 137Cs for 1-day release (at the rate of 10(10) Bq/s); and (3) a set of statistical methods (including exploratory, cluster, and probability fields analyses) for evaluation of trajectory and dispersion modeling results. The possible impact (on annual, seasonal, and monthly basis) of selected risk sites on neighboring geographical regions is evaluated using a set of various indicators. For trajectory modeling, the indicators examined are: (1) atmospheric transport pathways, (2) airflow probability fields, (3) fast transport probability fields, (4) maximum possible impact zone, (5) maximum reaching distance, and (6) typical transport time fields. For dispersion modeling, the indicators examined are: (1) time integrated air concentration, (2) dry deposition, and (3) wet deposition. It was found for both sites that within the boundary layer the westerly flows are dominant throughout the year (more than 60% of the time), increasing with altitude of free troposphere up to 85% of the time. For the Kamchatka site, the US regions are at the highest risk with the average times of atmospheric transport ranging from 3 to 5.1 days and depositions of 10(-1) Bq/m2 and lower. For the Vladivostok site, the northern China and Japan regions are at the highest risk with the average times of atmospheric transport of 0.5 and 1.6 days, respectively, and depositions ranging from 10(0) to 10(+2) Bq/m2. The areas of maximum potentially impacted zones are 30 x 10(4) km2 and 25 x 10(4) km2 for the Kamchatka and Vladivostok sites, respectively.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N07c7a5fb4095442c8cff1bda4174345b
31 N0a7513bdd6334cef97f177f472e779dd
32 sg:journal.1095684
33 schema:name ASSESSMENT OF POTENTIAL ATMOSPHERIC TRANSPORT AND DEPOSITION PATTERNS DUE TO RUSSIAN PACIFIC FLEET OPERATIONS
34 schema:pagination 261-287
35 schema:productId N25b97d15a51d46f7b9d6e3fe810ebb63
36 N4240f8e988164c9db72d5c92feb6f442
37 N5f02e782014b4b2c977d6e0f250ac248
38 N93e4e3a3a35c49e2b5133a6808825f2a
39 Nf8440f11e05241aab7d6339b91513e27
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021955768
41 https://doi.org/10.1007/s10661-005-0295-7
42 schema:sdDatePublished 2019-04-15T09:23
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N06a7a64e80014ac2843469799cf0bb19
45 schema:url http://link.springer.com/10.1007%2Fs10661-005-0295-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N06a7a64e80014ac2843469799cf0bb19 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N07c7a5fb4095442c8cff1bda4174345b schema:volumeNumber 101
52 rdf:type schema:PublicationVolume
53 N0a7513bdd6334cef97f177f472e779dd schema:issueNumber 1-3
54 rdf:type schema:PublicationIssue
55 N1666f387054944d08d6f7c580277afc4 rdf:first N286e5e472ca646c188c2b59d7fcc604b
56 rdf:rest Nc43e2c05390d446db8910febd678c950
57 N16c088796f3d42748bde5e2e2475ef32 rdf:first sg:person.0576404275.89
58 rdf:rest N4191a3e0b2684603981a43eaa24f6fdb
59 N18fcfdb800f0470c9063e5a8c5eff8cb rdf:first sg:person.07467717125.34
60 rdf:rest N9260c004aaa2449dbfdee526f589f958
61 N25b97d15a51d46f7b9d6e3fe810ebb63 schema:name doi
62 schema:value 10.1007/s10661-005-0295-7
63 rdf:type schema:PropertyValue
64 N286e5e472ca646c188c2b59d7fcc604b schema:affiliation https://www.grid.ac/institutes/grid.75276.31
65 schema:familyName BROWN
66 schema:givenName K.
67 rdf:type schema:Person
68 N2a087313878149ae88f6755ab58183ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Radioactive Fallout
70 rdf:type schema:DefinedTerm
71 N38d6504922f84492848f56af4cb7865f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Nuclear Warfare
73 rdf:type schema:DefinedTerm
74 N4191a3e0b2684603981a43eaa24f6fdb rdf:first N5409634b569244bd936fa04e9ca1b5f7
75 rdf:rest Nf6345412c51d4f8189e762d8796c947c
76 N4240f8e988164c9db72d5c92feb6f442 schema:name readcube_id
77 schema:value 6899e48787a7f40cb13fca60a57eae6deaf560108476e0ff2a3ff128072565ea
78 rdf:type schema:PropertyValue
79 N52418a4058854db980fedc9a2cdf09a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Risk Factors
81 rdf:type schema:DefinedTerm
82 N5409634b569244bd936fa04e9ca1b5f7 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
83 schema:familyName PARKER
84 schema:givenName F. L.
85 rdf:type schema:Person
86 N5755d9c8a7984254956c77c470caff60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Pacific Ocean
88 rdf:type schema:DefinedTerm
89 N5f02e782014b4b2c977d6e0f250ac248 schema:name nlm_unique_id
90 schema:value 8508350
91 rdf:type schema:PropertyValue
92 N9260c004aaa2449dbfdee526f589f958 rdf:first sg:person.016055170117.41
93 rdf:rest N16c088796f3d42748bde5e2e2475ef32
94 N93e4e3a3a35c49e2b5133a6808825f2a schema:name dimensions_id
95 schema:value pub.1021955768
96 rdf:type schema:PropertyValue
97 N9526fd604f2e4bcd973daf92d5d3f01b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Air Movements
99 rdf:type schema:DefinedTerm
100 Nc43e2c05390d446db8910febd678c950 rdf:first sg:person.0632137462.01
101 rdf:rest rdf:nil
102 Nc8b6f85024f54ecc9618764510812447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Russia
104 rdf:type schema:DefinedTerm
105 Nd8047dd590fb4a31bbbfd3e6151efbf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Geography
107 rdf:type schema:DefinedTerm
108 Nea31e86721dd46cb8cba1fbc5ecf25f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Atmosphere
110 rdf:type schema:DefinedTerm
111 Nedc27ebb29cc4b8fa6767b5402dd490c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Air Pollutants, Radioactive
113 rdf:type schema:DefinedTerm
114 Nf0497c15ccbb4dcc8f20d2ff2632a386 schema:affiliation https://www.grid.ac/institutes/grid.18919.38
115 schema:familyName NOVIKOV
116 schema:givenName V.
117 rdf:type schema:Person
118 Nf6345412c51d4f8189e762d8796c947c rdf:first Nf0497c15ccbb4dcc8f20d2ff2632a386
119 rdf:rest N1666f387054944d08d6f7c580277afc4
120 Nf8440f11e05241aab7d6339b91513e27 schema:name pubmed_id
121 schema:value 15739268
122 rdf:type schema:PropertyValue
123 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
124 schema:name Economics
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
127 schema:name Applied Economics
128 rdf:type schema:DefinedTerm
129 sg:journal.1095684 schema:issn 0167-6369
130 1573-2959
131 schema:name Environmental Monitoring and Assessment
132 rdf:type schema:Periodical
133 sg:person.016055170117.41 schema:affiliation https://www.grid.ac/institutes/grid.14170.33
134 schema:familyName BAKLANOV
135 schema:givenName A. A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055170117.41
137 rdf:type schema:Person
138 sg:person.0576404275.89 schema:affiliation https://www.grid.ac/institutes/grid.14170.33
139 schema:familyName SØRENSEN
140 schema:givenName J. H.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576404275.89
142 rdf:type schema:Person
143 sg:person.0632137462.01 schema:affiliation https://www.grid.ac/institutes/grid.75276.31
144 schema:familyName COMPTON
145 schema:givenName K. L.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632137462.01
147 rdf:type schema:Person
148 sg:person.07467717125.34 schema:affiliation https://www.grid.ac/institutes/grid.14170.33
149 schema:familyName MAHURA
150 schema:givenName A. G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467717125.34
152 rdf:type schema:Person
153 sg:pub.10.1023/a:1011323021288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007708067
154 https://doi.org/10.1023/a:1011323021288
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/a:1011359727500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029655598
157 https://doi.org/10.1023/a:1011359727500
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0265-931x(01)00094-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031371143
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s1352-2310(98)00178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007260805
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s1352-2310(98)00183-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001538908
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s1352-2310(99)00168-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029601277
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s1464-1909(01)00087-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051203875
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/18811248.1994.9735247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007747636
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1175/1520-0493(1986)114<0571:toltai>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036125880
172 rdf:type schema:CreativeWork
173 https://doi.org/10.4324/9781315071602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024072584
174 rdf:type schema:CreativeWork
175 https://doi.org/10.5194/acp-4-485-2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032886822
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.14170.33 schema:alternateName Danish Meteorological Institute
178 schema:name Danish Meteorological Institute, DMI, Copenhagen, Denmark
179 Institute of Northern Environmental Problems, INEP, Kola Science Center, Apatity, Russia
180 International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
183 schema:name International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria
184 Vanderbilt University, Nashville, Tennessee, U.S.A.
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.18919.38 schema:alternateName Kurchatov Institute
187 schema:name International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria
188 Kurchatov Institute, Moscow, Russia
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.75276.31 schema:alternateName International Institute for Applied Systems Analysis
191 schema:name International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...