Predicting customer purchase behavior in the e-commerce context View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Jiangtao Qiu, Zhangxi Lin, Yinghong Li

ABSTRACT

Predicting customer purchase behavior is an interesting and challenging task. In the e-commerce context, meeting this challenge requires confronting many problems not observed in the traditional business context. Recommender system technology has been widely adopted by e-commerce websites. However, a traditional recommendation algorithm cannot perform well the predictive task in this context. This study intends to build a predictive framework for customer purchase behavior in the e-commerce context. This framework, known as CustOmer purchase pREdiction modeL (COREL), may be understood as a two-stage process. First, associations among products are investigated and exploited to predicate customer’s motivations, i.e., to build a candidate product collection. Next, customer preferences for product features are learned and subsequently used to identify the candidate products most likely to be purchased. This study investigates three categories of product features and develops methods to detect customer preferences for each of these three categories. When a product purchased by a particular consumer is submitted to COREL, the program can return the top n products most likely to be purchased by that customer in the future. Experiments conducted on a real dataset show that customer preference for particular product features plays a key role in decision-making and that COREL greatly outperforms the baseline methods. More... »

PAGES

427-452

References to SciGraph publications

  • 2007. Content-Based Recommendation Systems in THE ADAPTIVE WEB
  • 2005-07. Data Mining for Inventory Item Selection with Cross-Selling Considerations in DATA MINING AND KNOWLEDGE DISCOVERY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10660-015-9191-6

    DOI

    http://dx.doi.org/10.1007/s10660-015-9191-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044922002


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Business and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southwestern University of Finance and Economics", 
              "id": "https://www.grid.ac/institutes/grid.443347.3", 
              "name": [
                "School of Information, Southwestern University of Finance and Economics, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qiu", 
            "givenName": "Jiangtao", 
            "id": "sg:person.016135773755.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135773755.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas Tech University", 
              "id": "https://www.grid.ac/institutes/grid.264784.b", 
              "name": [
                "The Rawls College of Business Administration, Texas Tech University, Lubbock, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Zhangxi", 
            "id": "sg:person.013405043764.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013405043764.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southwestern University of Finance and Economics", 
              "id": "https://www.grid.ac/institutes/grid.443347.3", 
              "name": [
                "School of Humanities, Southwestern University of Finance and Economics, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yinghong", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/mar.20621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008987205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.im.2011.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010748189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1509/jmkr.40.3.282.19240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011563427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1509/jmkr.40.3.282.19240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011563427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-005-1359-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013465993", 
              "https://doi.org/10.1007/s10618-005-1359-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-005-1359-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013465993", 
              "https://doi.org/10.1007/s10618-005-1359-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2012.04.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013954888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2006.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017316455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1509/jmkr.45.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019817928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/985692.985733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021652857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2488388.2488475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022160831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2507157.2507208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022406489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2009916.2010050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024049711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1871437.1871559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024775404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9236(02)00079-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026287469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9236(02)00079-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026287469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2600428.2609608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026340938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1526709.1526943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028028504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/245108.245124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031679233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1772690.1772773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033828195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/290941.291008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046105147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2488388.2488521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050121026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0957-4174(99)00026-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051001112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72079-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051673629", 
              "https://doi.org/10.1007/978-3-540-72079-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/ijoc.1110.0484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064706934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mksc.2014.0872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064713648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.1070.0760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064714786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.1110.1370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064715517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2002.1184025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094407881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1613715.1613751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099150814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/41703505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107655031"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "Predicting customer purchase behavior is an interesting and challenging task. In the e-commerce context, meeting this challenge requires confronting many problems not observed in the traditional business context. Recommender system technology has been widely adopted by e-commerce websites. However, a traditional recommendation algorithm cannot perform well the predictive task in this context. This study intends to build a predictive framework for customer purchase behavior in the e-commerce context. This framework, known as CustOmer purchase pREdiction modeL (COREL), may be understood as a two-stage process. First, associations among products are investigated and exploited to predicate customer\u2019s motivations, i.e., to build a candidate product collection. Next, customer preferences for product features are learned and subsequently used to identify the candidate products most likely to be purchased. This study investigates three categories of product features and develops methods to detect customer preferences for each of these three categories. When a product purchased by a particular consumer is submitted to COREL, the program can return the top n products most likely to be purchased by that customer in the future. Experiments conducted on a real dataset show that customer preference for particular product features plays a key role in decision-making and that COREL greatly outperforms the baseline methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10660-015-9191-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7202083", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136862", 
            "issn": [
              "1389-5753", 
              "1572-9362"
            ], 
            "name": "Electronic Commerce Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Predicting customer purchase behavior in the e-commerce context", 
        "pagination": "427-452", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d5fa0cb07186b81b6f1aa4507d59f24b46cd8cdb65469c764eb3027f7c4f7307"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10660-015-9191-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044922002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10660-015-9191-6", 
          "https://app.dimensions.ai/details/publication/pub.1044922002"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000593.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10660-015-9191-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10660-015-9191-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10660-015-9191-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10660-015-9191-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10660-015-9191-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10660-015-9191-6 schema:about anzsrc-for:15
    2 anzsrc-for:1503
    3 schema:author N1db9e249967949658288c3ba2bfd2180
    4 schema:citation sg:pub.10.1007/978-3-540-72079-9_10
    5 sg:pub.10.1007/s10618-005-1359-6
    6 https://doi.org/10.1002/mar.20621
    7 https://doi.org/10.1016/j.eswa.2006.10.012
    8 https://doi.org/10.1016/j.im.2011.07.004
    9 https://doi.org/10.1016/j.knosys.2012.04.023
    10 https://doi.org/10.1016/s0167-9236(02)00079-9
    11 https://doi.org/10.1016/s0957-4174(99)00026-3
    12 https://doi.org/10.1109/icdm.2002.1184025
    13 https://doi.org/10.1145/1526709.1526943
    14 https://doi.org/10.1145/1772690.1772773
    15 https://doi.org/10.1145/1871437.1871559
    16 https://doi.org/10.1145/1961189.1961199
    17 https://doi.org/10.1145/2009916.2010050
    18 https://doi.org/10.1145/245108.245124
    19 https://doi.org/10.1145/2488388.2488475
    20 https://doi.org/10.1145/2488388.2488521
    21 https://doi.org/10.1145/2507157.2507208
    22 https://doi.org/10.1145/2600428.2609608
    23 https://doi.org/10.1145/290941.291008
    24 https://doi.org/10.1145/985692.985733
    25 https://doi.org/10.1287/ijoc.1110.0484
    26 https://doi.org/10.1287/mksc.2014.0872
    27 https://doi.org/10.1287/mnsc.1070.0760
    28 https://doi.org/10.1287/mnsc.1110.1370
    29 https://doi.org/10.1509/jmkr.40.3.282.19240
    30 https://doi.org/10.1509/jmkr.45.1.77
    31 https://doi.org/10.2307/41703505
    32 https://doi.org/10.3115/1613715.1613751
    33 schema:datePublished 2015-12
    34 schema:datePublishedReg 2015-12-01
    35 schema:description Predicting customer purchase behavior is an interesting and challenging task. In the e-commerce context, meeting this challenge requires confronting many problems not observed in the traditional business context. Recommender system technology has been widely adopted by e-commerce websites. However, a traditional recommendation algorithm cannot perform well the predictive task in this context. This study intends to build a predictive framework for customer purchase behavior in the e-commerce context. This framework, known as CustOmer purchase pREdiction modeL (COREL), may be understood as a two-stage process. First, associations among products are investigated and exploited to predicate customer’s motivations, i.e., to build a candidate product collection. Next, customer preferences for product features are learned and subsequently used to identify the candidate products most likely to be purchased. This study investigates three categories of product features and develops methods to detect customer preferences for each of these three categories. When a product purchased by a particular consumer is submitted to COREL, the program can return the top n products most likely to be purchased by that customer in the future. Experiments conducted on a real dataset show that customer preference for particular product features plays a key role in decision-making and that COREL greatly outperforms the baseline methods.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N2aab4e23d9b447829586df2a951ff408
    40 N51e01f8815f3410c98142c7088994217
    41 sg:journal.1136862
    42 schema:name Predicting customer purchase behavior in the e-commerce context
    43 schema:pagination 427-452
    44 schema:productId N5537d086462345d29dd393247e88cc60
    45 N72c58a3d01a1405c91f0b38ee4fcc6b9
    46 Nfcaf0071376944caa834e21fb9796277
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044922002
    48 https://doi.org/10.1007/s10660-015-9191-6
    49 schema:sdDatePublished 2019-04-10T19:20
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N66bf92aa1faf4ac29b8bded3c3efa1a9
    52 schema:url http://link.springer.com/10.1007/s10660-015-9191-6
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0ddb6dc4d4c846099fc15ac2aec4240d rdf:first Nc9726de1bf1d4f44ba3f583c7db7cac9
    57 rdf:rest rdf:nil
    58 N1db9e249967949658288c3ba2bfd2180 rdf:first sg:person.016135773755.14
    59 rdf:rest N8bcbbe0d43b243a49c098099d982569e
    60 N2aab4e23d9b447829586df2a951ff408 schema:volumeNumber 15
    61 rdf:type schema:PublicationVolume
    62 N51e01f8815f3410c98142c7088994217 schema:issueNumber 4
    63 rdf:type schema:PublicationIssue
    64 N5537d086462345d29dd393247e88cc60 schema:name readcube_id
    65 schema:value d5fa0cb07186b81b6f1aa4507d59f24b46cd8cdb65469c764eb3027f7c4f7307
    66 rdf:type schema:PropertyValue
    67 N66bf92aa1faf4ac29b8bded3c3efa1a9 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N72c58a3d01a1405c91f0b38ee4fcc6b9 schema:name dimensions_id
    70 schema:value pub.1044922002
    71 rdf:type schema:PropertyValue
    72 N8bcbbe0d43b243a49c098099d982569e rdf:first sg:person.013405043764.98
    73 rdf:rest N0ddb6dc4d4c846099fc15ac2aec4240d
    74 Nc9726de1bf1d4f44ba3f583c7db7cac9 schema:affiliation https://www.grid.ac/institutes/grid.443347.3
    75 schema:familyName Li
    76 schema:givenName Yinghong
    77 rdf:type schema:Person
    78 Nfcaf0071376944caa834e21fb9796277 schema:name doi
    79 schema:value 10.1007/s10660-015-9191-6
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Commerce, Management, Tourism and Services
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Business and Management
    86 rdf:type schema:DefinedTerm
    87 sg:grant.7202083 http://pending.schema.org/fundedItem sg:pub.10.1007/s10660-015-9191-6
    88 rdf:type schema:MonetaryGrant
    89 sg:journal.1136862 schema:issn 1389-5753
    90 1572-9362
    91 schema:name Electronic Commerce Research
    92 rdf:type schema:Periodical
    93 sg:person.013405043764.98 schema:affiliation https://www.grid.ac/institutes/grid.264784.b
    94 schema:familyName Lin
    95 schema:givenName Zhangxi
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013405043764.98
    97 rdf:type schema:Person
    98 sg:person.016135773755.14 schema:affiliation https://www.grid.ac/institutes/grid.443347.3
    99 schema:familyName Qiu
    100 schema:givenName Jiangtao
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135773755.14
    102 rdf:type schema:Person
    103 sg:pub.10.1007/978-3-540-72079-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051673629
    104 https://doi.org/10.1007/978-3-540-72079-9_10
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10618-005-1359-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013465993
    107 https://doi.org/10.1007/s10618-005-1359-6
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/mar.20621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008987205
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.eswa.2006.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017316455
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.im.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010748189
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.knosys.2012.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013954888
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0167-9236(02)00079-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026287469
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0957-4174(99)00026-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051001112
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/icdm.2002.1184025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094407881
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1145/1526709.1526943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028028504
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1145/1772690.1772773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033828195
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1145/1871437.1871559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024775404
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1145/2009916.2010050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024049711
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1145/245108.245124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031679233
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1145/2488388.2488475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022160831
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/2488388.2488521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050121026
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/2507157.2507208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022406489
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1145/2600428.2609608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026340938
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/290941.291008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046105147
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1145/985692.985733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021652857
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1287/ijoc.1110.0484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706934
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1287/mksc.2014.0872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064713648
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1287/mnsc.1070.0760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064714786
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1287/mnsc.1110.1370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064715517
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1509/jmkr.40.3.282.19240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011563427
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1509/jmkr.45.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817928
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.2307/41703505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107655031
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.3115/1613715.1613751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099150814
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.264784.b schema:alternateName Texas Tech University
    164 schema:name The Rawls College of Business Administration, Texas Tech University, Lubbock, TX, USA
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.443347.3 schema:alternateName Southwestern University of Finance and Economics
    167 schema:name School of Humanities, Southwestern University of Finance and Economics, Chengdu, China
    168 School of Information, Southwestern University of Finance and Economics, Chengdu, China
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...