Spatial and climatic factors associated with the geographical distribution of citrus black spot disease in South Africa. A Bayesian latent ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

Joaquín Martínez-Minaya, David Conesa, Antonio López-Quílez, Antonio Vicent

ABSTRACT

Citrus black spot (CBS), caused by Phyllosticta citricarpa, is the main fungal disease affecting this crop and quarantine measures have been implemented. The role of climate as a limiting factor for the establishment and spread of CBS to new areas has been debated, but previous studies did not address the effects of spatial factors in the geographic distribution of the disease. The effects of climatic and spatial factors were studied using South Africa as a case study, due to its diversity of climates within citrus-growing regions. Georeferenced datasets of CBS presence/absence in citrus areas were assembled for two stages of the epidemic: 1950 and 2014. Climatic variables were obtained from the WorldClim database. Moran’s I and Geary’s C analyses indicated that CBS distribution data presented significant spatial autocorrelation, particularly in 2014. Collinearity was detected among climatic variables. Spatial logistic regressions, particular case of latent Gaussian models, were fitted to CBS presence/absence in 1950 or 2014 with the Integrated Nested Laplace Approximation methodology. Principal components (PCs) or pre-selection of climatic variables based on their correlation coefficients were used to cope with collinearity. Spatial effects were incorporated with a geostatistical term. In general, the models indicated a positive relationship between CBS presence and climatic variables or PCs associated with warm temperatures and high precipitation. Nevertheless, in 1950, models that also included a spatial effect outperformed those with climatic variables only. Problems of model convergence were detected in 2014 due to the strong spatial structure of CBS distribution data. The consequences of ignoring spatial dependence to estimate the potential geographical range of CBS are discussed. More... »

PAGES

991-1007

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10658-018-1435-6

DOI

http://dx.doi.org/10.1007/s10658-018-1435-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101188968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Departament d\u2019Estad\u00edstica i Investigaci\u00f3 Operativa, Universitat de Val\u00e9ncia, C/ Dr. Moliner 50, 46100, Burjassot, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez-Minaya", 
        "givenName": "Joaqu\u00edn", 
        "id": "sg:person.011042027475.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011042027475.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Departament d\u2019Estad\u00edstica i Investigaci\u00f3 Operativa, Universitat de Val\u00e9ncia, C/ Dr. Moliner 50, 46100, Burjassot, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conesa", 
        "givenName": "David", 
        "id": "sg:person.011011571143.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011571143.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Departament d\u2019Estad\u00edstica i Investigaci\u00f3 Operativa, Universitat de Val\u00e9ncia, C/ Dr. Moliner 50, 46100, Burjassot, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Qu\u00edlez", 
        "givenName": "Antonio", 
        "id": "sg:person.0645154205.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154205.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Valenciano de Investigaciones Agrarias", 
          "id": "https://www.grid.ac/institutes/grid.419276.f", 
          "name": [
            "Centro de Protecci\u00f3n Vegetal y Biotecnolog\u00eda, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vicent", 
        "givenName": "Antonio", 
        "id": "sg:person.016267341127.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267341127.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11222-013-9416-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001441787", 
          "https://doi.org/10.1007/s11222-013-9416-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10658-015-0666-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001803841", 
          "https://doi.org/10.1007/s10658-015-0666-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cropro.2004.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001882244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2011.00777.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005242164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10658-017-1146-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005650310", 
          "https://doi.org/10.1007/s10658-017-1146-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10658-017-1146-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005650310", 
          "https://doi.org/10.1007/s10658-017-1146-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1472-4642.2011.00854.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005666538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13313-012-0178-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006039671", 
          "https://doi.org/10.1007/s13313-012-0178-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1215933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006824898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00700.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00700.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cropro.2012.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013513275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2903/j.efsa.2016.4513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016358383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0020957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017765143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2007.0906-7590.05171.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018033976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cropro.2015.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018050764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2011.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020395110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1466-8238.2010.00561.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021874515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1466-8238.2010.00561.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021874515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022015879", 
          "https://doi.org/10.1038/srep06568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/geb.12268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022329655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0587.2012.07348.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022525509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10658-013-0276-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023570025", 
          "https://doi.org/10.1007/s10658-013-0276-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3059.2007.01705.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025410515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-012-0652-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030369778", 
          "https://doi.org/10.1007/s00477-012-0652-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/2041-210x.12244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033526290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10658-013-0365-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037644924", 
          "https://doi.org/10.1007/s10658-013-0365-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2699.2011.02659.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038016642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.110308.120159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038408735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2001.00647.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039407635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/07-1150.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040119900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2903/j.efsa.2014.3557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043570809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13225-013-0235-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044052013", 
          "https://doi.org/10.1007/s13225-013-0235-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051068606", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203492024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051068606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/pd-65-945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060081502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-07-11-0194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060099333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-12-15-0316-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060099987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-95-0092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060100016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-95-0092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060100016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3287615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062604299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1525/bio.2010.60.5.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067667606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17660/actahortic.2015.1065.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068433662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v063.i19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-11-16-0419-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083934632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-01901-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085220754", 
          "https://doi.org/10.1038/s41598-017-01901-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.5086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085413821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.simyco.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085708903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b11769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095905571"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "Citrus black spot (CBS), caused by Phyllosticta citricarpa, is the main fungal disease affecting this crop and quarantine measures have been implemented. The role of climate as a limiting factor for the establishment and spread of CBS to new areas has been debated, but previous studies did not address the effects of spatial factors in the geographic distribution of the disease. The effects of climatic and spatial factors were studied using South Africa as a case study, due to its diversity of climates within citrus-growing regions. Georeferenced datasets of CBS presence/absence in citrus areas were assembled for two stages of the epidemic: 1950 and 2014. Climatic variables were obtained from the WorldClim database. Moran\u2019s I and Geary\u2019s C analyses indicated that CBS distribution data presented significant spatial autocorrelation, particularly in 2014. Collinearity was detected among climatic variables. Spatial logistic regressions, particular case of latent Gaussian models, were fitted to CBS presence/absence in 1950 or 2014 with the Integrated Nested Laplace Approximation methodology. Principal components (PCs) or pre-selection of climatic variables based on their correlation coefficients were used to cope with collinearity. Spatial effects were incorporated with a geostatistical term. In general, the models indicated a positive relationship between CBS presence and climatic variables or PCs associated with warm temperatures and high precipitation. Nevertheless, in 1950, models that also included a spatial effect outperformed those with climatic variables only. Problems of model convergence were detected in 2014 due to the strong spatial structure of CBS distribution data. The consequences of ignoring spatial dependence to estimate the potential geographical range of CBS are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10658-018-1435-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023051", 
        "issn": [
          "0929-1873", 
          "1573-8469"
        ], 
        "name": "European Journal of Plant Pathology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "151"
      }
    ], 
    "name": "Spatial and climatic factors associated with the geographical distribution of citrus black spot disease in South Africa. A Bayesian latent Gaussian model approach", 
    "pagination": "991-1007", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef9c53cd5f815db3ecd88b55da9bbbb71dc7a3e8d0f9f4028dfb7279d82e4df9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10658-018-1435-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101188968"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10658-018-1435-6", 
      "https://app.dimensions.ai/details/publication/pub.1101188968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10658-018-1435-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10658-018-1435-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10658-018-1435-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10658-018-1435-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10658-018-1435-6'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10658-018-1435-6 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Necd379419e264ee0a432cc9c99036a42
4 schema:citation sg:pub.10.1007/s00477-012-0652-3
5 sg:pub.10.1007/s10658-013-0276-6
6 sg:pub.10.1007/s10658-013-0365-6
7 sg:pub.10.1007/s10658-015-0666-z
8 sg:pub.10.1007/s10658-017-1146-4
9 sg:pub.10.1007/s11222-013-9416-2
10 sg:pub.10.1007/s13225-013-0235-8
11 sg:pub.10.1007/s13313-012-0178-7
12 sg:pub.10.1038/s41598-017-01901-2
13 sg:pub.10.1038/srep06568
14 sg:pub.10.1186/1471-2105-12-77
15 https://app.dimensions.ai/details/publication/pub.1051068606
16 https://doi.org/10.1002/joc.1276
17 https://doi.org/10.1002/joc.5086
18 https://doi.org/10.1016/j.cropro.2004.08.003
19 https://doi.org/10.1016/j.cropro.2012.10.006
20 https://doi.org/10.1016/j.cropro.2015.05.016
21 https://doi.org/10.1016/j.ecolmodel.2011.02.011
22 https://doi.org/10.1016/j.simyco.2017.05.003
23 https://doi.org/10.1046/j.1365-2664.2001.00647.x
24 https://doi.org/10.1094/pd-65-945
25 https://doi.org/10.1094/phyto-07-11-0194
26 https://doi.org/10.1094/phyto-11-16-0419-r
27 https://doi.org/10.1094/phyto-12-15-0316-r
28 https://doi.org/10.1094/phyto-95-0092
29 https://doi.org/10.1111/2041-210x.12244
30 https://doi.org/10.1111/geb.12268
31 https://doi.org/10.1111/j.1365-2699.2011.02659.x
32 https://doi.org/10.1111/j.1365-3059.2007.01705.x
33 https://doi.org/10.1111/j.1466-8238.2010.00561.x
34 https://doi.org/10.1111/j.1467-9868.2008.00700.x
35 https://doi.org/10.1111/j.1467-9868.2011.00777.x
36 https://doi.org/10.1111/j.1472-4642.2011.00854.x
37 https://doi.org/10.1111/j.1600-0587.2012.07348.x
38 https://doi.org/10.1111/j.2007.0906-7590.05171.x
39 https://doi.org/10.1126/science.1215933
40 https://doi.org/10.1126/science.3287615
41 https://doi.org/10.1146/annurev.ecolsys.110308.120159
42 https://doi.org/10.1201/9780203492024
43 https://doi.org/10.1201/b11769
44 https://doi.org/10.1371/journal.pone.0020957
45 https://doi.org/10.1525/bio.2010.60.5.5
46 https://doi.org/10.17660/actahortic.2015.1065.137
47 https://doi.org/10.18637/jss.v063.i19
48 https://doi.org/10.1890/04-0609
49 https://doi.org/10.1890/07-1150.1
50 https://doi.org/10.2903/j.efsa.2014.3557
51 https://doi.org/10.2903/j.efsa.2016.4513
52 schema:datePublished 2018-08
53 schema:datePublishedReg 2018-08-01
54 schema:description Citrus black spot (CBS), caused by Phyllosticta citricarpa, is the main fungal disease affecting this crop and quarantine measures have been implemented. The role of climate as a limiting factor for the establishment and spread of CBS to new areas has been debated, but previous studies did not address the effects of spatial factors in the geographic distribution of the disease. The effects of climatic and spatial factors were studied using South Africa as a case study, due to its diversity of climates within citrus-growing regions. Georeferenced datasets of CBS presence/absence in citrus areas were assembled for two stages of the epidemic: 1950 and 2014. Climatic variables were obtained from the WorldClim database. Moran’s I and Geary’s C analyses indicated that CBS distribution data presented significant spatial autocorrelation, particularly in 2014. Collinearity was detected among climatic variables. Spatial logistic regressions, particular case of latent Gaussian models, were fitted to CBS presence/absence in 1950 or 2014 with the Integrated Nested Laplace Approximation methodology. Principal components (PCs) or pre-selection of climatic variables based on their correlation coefficients were used to cope with collinearity. Spatial effects were incorporated with a geostatistical term. In general, the models indicated a positive relationship between CBS presence and climatic variables or PCs associated with warm temperatures and high precipitation. Nevertheless, in 1950, models that also included a spatial effect outperformed those with climatic variables only. Problems of model convergence were detected in 2014 due to the strong spatial structure of CBS distribution data. The consequences of ignoring spatial dependence to estimate the potential geographical range of CBS are discussed.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N7a541b1527ce4e389c49e03916c2e875
59 Ndba02cc7163f44178f5c38f1d64ddc43
60 sg:journal.1023051
61 schema:name Spatial and climatic factors associated with the geographical distribution of citrus black spot disease in South Africa. A Bayesian latent Gaussian model approach
62 schema:pagination 991-1007
63 schema:productId N40170c39a5e348d494a0c7b2624e4bbd
64 N57183ea92b174d58b2a74a3c3645fd66
65 Nab3ba64187d54529a64944a1c7ab7d8c
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101188968
67 https://doi.org/10.1007/s10658-018-1435-6
68 schema:sdDatePublished 2019-04-11T09:40
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N2f8646d2fa4141a9b092386acd1601ad
71 schema:url https://link.springer.com/10.1007%2Fs10658-018-1435-6
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N1136940f53604a8c94c893087dfdd61f rdf:first sg:person.011011571143.43
76 rdf:rest N7b82f1d08ff54f4c98365f56a5ce08f1
77 N2f8646d2fa4141a9b092386acd1601ad schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N40170c39a5e348d494a0c7b2624e4bbd schema:name readcube_id
80 schema:value ef9c53cd5f815db3ecd88b55da9bbbb71dc7a3e8d0f9f4028dfb7279d82e4df9
81 rdf:type schema:PropertyValue
82 N57183ea92b174d58b2a74a3c3645fd66 schema:name doi
83 schema:value 10.1007/s10658-018-1435-6
84 rdf:type schema:PropertyValue
85 N7a541b1527ce4e389c49e03916c2e875 schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 N7b82f1d08ff54f4c98365f56a5ce08f1 rdf:first sg:person.0645154205.09
88 rdf:rest Nd7df0f9907e9424ba3d441ced2d8d9b4
89 Nab3ba64187d54529a64944a1c7ab7d8c schema:name dimensions_id
90 schema:value pub.1101188968
91 rdf:type schema:PropertyValue
92 Nd7df0f9907e9424ba3d441ced2d8d9b4 rdf:first sg:person.016267341127.52
93 rdf:rest rdf:nil
94 Ndba02cc7163f44178f5c38f1d64ddc43 schema:volumeNumber 151
95 rdf:type schema:PublicationVolume
96 Necd379419e264ee0a432cc9c99036a42 rdf:first sg:person.011042027475.05
97 rdf:rest N1136940f53604a8c94c893087dfdd61f
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
102 schema:name Geomatic Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1023051 schema:issn 0929-1873
105 1573-8469
106 schema:name European Journal of Plant Pathology
107 rdf:type schema:Periodical
108 sg:person.011011571143.43 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
109 schema:familyName Conesa
110 schema:givenName David
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011571143.43
112 rdf:type schema:Person
113 sg:person.011042027475.05 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
114 schema:familyName Martínez-Minaya
115 schema:givenName Joaquín
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011042027475.05
117 rdf:type schema:Person
118 sg:person.016267341127.52 schema:affiliation https://www.grid.ac/institutes/grid.419276.f
119 schema:familyName Vicent
120 schema:givenName Antonio
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267341127.52
122 rdf:type schema:Person
123 sg:person.0645154205.09 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
124 schema:familyName López-Quílez
125 schema:givenName Antonio
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154205.09
127 rdf:type schema:Person
128 sg:pub.10.1007/s00477-012-0652-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030369778
129 https://doi.org/10.1007/s00477-012-0652-3
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10658-013-0276-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023570025
132 https://doi.org/10.1007/s10658-013-0276-6
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10658-013-0365-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037644924
135 https://doi.org/10.1007/s10658-013-0365-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10658-015-0666-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001803841
138 https://doi.org/10.1007/s10658-015-0666-z
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10658-017-1146-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005650310
141 https://doi.org/10.1007/s10658-017-1146-4
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11222-013-9416-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001441787
144 https://doi.org/10.1007/s11222-013-9416-2
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s13225-013-0235-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044052013
147 https://doi.org/10.1007/s13225-013-0235-8
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s13313-012-0178-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006039671
150 https://doi.org/10.1007/s13313-012-0178-7
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/s41598-017-01901-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085220754
153 https://doi.org/10.1038/s41598-017-01901-2
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep06568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022015879
156 https://doi.org/10.1038/srep06568
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
159 https://doi.org/10.1186/1471-2105-12-77
160 rdf:type schema:CreativeWork
161 https://app.dimensions.ai/details/publication/pub.1051068606 schema:CreativeWork
162 https://doi.org/10.1002/joc.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895020
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/joc.5086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085413821
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.cropro.2004.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001882244
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.cropro.2012.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013513275
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cropro.2015.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018050764
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ecolmodel.2011.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020395110
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.simyco.2017.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085708903
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1046/j.1365-2664.2001.00647.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039407635
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1094/pd-65-945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060081502
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1094/phyto-07-11-0194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060099333
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1094/phyto-11-16-0419-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1083934632
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1094/phyto-12-15-0316-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1060099987
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1094/phyto-95-0092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060100016
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/2041-210x.12244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033526290
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/geb.12268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022329655
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1365-2699.2011.02659.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038016642
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1365-3059.2007.01705.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025410515
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1466-8238.2010.00561.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021874515
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/j.1467-9868.2008.00700.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007468045
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1467-9868.2011.00777.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005242164
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1472-4642.2011.00854.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005666538
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1600-0587.2012.07348.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022525509
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.2007.0906-7590.05171.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033976
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1215933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006824898
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.3287615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604299
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1146/annurev.ecolsys.110308.120159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038408735
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1201/9780203492024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051068606
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1201/b11769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095905571
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0020957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017765143
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1525/bio.2010.60.5.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067667606
221 rdf:type schema:CreativeWork
222 https://doi.org/10.17660/actahortic.2015.1065.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068433662
223 rdf:type schema:CreativeWork
224 https://doi.org/10.18637/jss.v063.i19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672947
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1890/04-0609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905138
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1890/07-1150.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040119900
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2903/j.efsa.2014.3557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043570809
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2903/j.efsa.2016.4513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016358383
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.419276.f schema:alternateName Instituto Valenciano de Investigaciones Agrarias
235 schema:name Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.5338.d schema:alternateName University of Valencia
238 schema:name Departament d’Estadística i Investigació Operativa, Universitat de Valéncia, C/ Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...