Genetic relationships among strains of Xanthomonas campestrispv. campestrisrevealed by novel rep-PCR primers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10

AUTHORS

S.V. Tsygankova, A.N. Ignatov, E.S. Boulygina, B.B. Kuznetsov, E.V. Korotkov

ABSTRACT

Novel primers for rep-PCR were developed with the original software and based on `ancient diverged periodical sequences'. Rep-PCR with these primers was applied to study genetic relationships among 51 Xanthomonas campestris strains. The strains were collected from different countries including Russia, Japan, UK, Germany and Hungary. Reference strains of three X. campestrispathovars and five other Xanthomonas species were included. Based on qualitative differences in amplification profiles, the strains were divided into four major groups. Two subgroups recognised within X. campestrispopulation were similar to RFLP haplotypes. The third subgroup included strains of two other pathovariants and Japanese isolates of X. campestris pv. campestriswhile the fourth group comprised the other species of Xanthomonas. The analysis of the diversity within X. campestris resulted in the conclusion that isolates belong to distinct clonal populations (subgroups). The differences between the subgroups of X. campestris were only slightly smaller than between species of Xanthomonas. A PCR fragment about 600 bp amplified by primer KRPN2 was found in nearly all tested strains of X. campestris.SCAR primers designed for this marker produced a single specific band for strains of X. campestris, but not for other Xanthomonas, Pseudomonas and Erwiniastrains tested. Application of the new primer set for rep-PCR offers a rapid, simple and reproducible method for identification of bacterial strains. The X. campestris-specific SCAR primers may be used in diagnostics of this important plant pathogen. More... »

PAGES

845-853

Journal

TITLE

European Journal of Plant Pathology

ISSUE

8

VOLUME

110

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10658-004-2726-7

DOI

http://dx.doi.org/10.1007/s10658-004-2726-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042728514


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Russian Academy of Sciences, Centre `Bioengineering', Pr. 60-letiya, 7/1, Oktyabrya, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsygankova", 
        "givenName": "S.V.", 
        "id": "sg:person.01333555075.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333555075.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Russian Academy of Sciences, Centre `Bioengineering', Pr. 60-letiya, 7/1, Oktyabrya, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignatov", 
        "givenName": "A.N.", 
        "id": "sg:person.01336240766.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336240766.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Russian Academy of Sciences, Centre `Bioengineering', Pr. 60-letiya, 7/1, Oktyabrya, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boulygina", 
        "givenName": "E.S.", 
        "id": "sg:person.0721643054.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721643054.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Russian Academy of Sciences, Centre `Bioengineering', Pr. 60-letiya, 7/1, Oktyabrya, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "B.B.", 
        "id": "sg:person.01151135415.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151135415.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Russian Academy of Sciences, Centre `Bioengineering', Pr. 60-letiya, 7/1, Oktyabrya, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korotkov", 
        "givenName": "E.V.", 
        "id": "sg:person.01274151123.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01996321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003794595", 
          "https://doi.org/10.1007/bf01996321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01996321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003794595", 
          "https://doi.org/10.1007/bf01996321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/298760a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003893697", 
          "https://doi.org/10.1038/298760a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1997.tb12563.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018708611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1997.tb12563.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018708611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1.1.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.22.6503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036111593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019893526803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046389108", 
          "https://doi.org/10.1023/a:1019893526803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/10.5.569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-5-022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060079224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/pd-64-736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060081110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto.2001.91.5.492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060101742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-84-1449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060109689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-84-1458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060109690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-45-3-472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060349141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-50-2-665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060350202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-137-7-1677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060368093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.174.13.4517-4523.1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062720656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077165982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082611566", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082639380", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082958017", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10", 
    "datePublishedReg": "2004-10-01", 
    "description": "Novel primers for rep-PCR were developed with the original software and based on `ancient diverged periodical sequences'. Rep-PCR with these primers was applied to study genetic relationships among 51 Xanthomonas campestris strains. The strains were collected from different countries including Russia, Japan, UK, Germany and Hungary. Reference strains of three X. campestrispathovars and five other Xanthomonas species were included. Based on qualitative differences in amplification profiles, the strains were divided into four major groups. Two subgroups recognised within X. campestrispopulation were similar to RFLP haplotypes. The third subgroup included strains of two other pathovariants and Japanese isolates of X. campestris pv. campestriswhile the fourth group comprised the other species of Xanthomonas. The analysis of the diversity within X. campestris resulted in the conclusion that isolates belong to distinct clonal populations (subgroups). The differences between the subgroups of X. campestris were only slightly smaller than between species of Xanthomonas. A PCR fragment about 600 bp amplified by primer KRPN2 was found in nearly all tested strains of X. campestris.SCAR primers designed for this marker produced a single specific band for strains of X. campestris, but not for other Xanthomonas, Pseudomonas and Erwiniastrains tested. Application of the new primer set for rep-PCR offers a rapid, simple and reproducible method for identification of bacterial strains. The X. campestris-specific SCAR primers may be used in diagnostics of this important plant pathogen.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10658-004-2726-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023051", 
        "issn": [
          "0929-1873", 
          "1573-8469"
        ], 
        "name": "European Journal of Plant Pathology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "110"
      }
    ], 
    "name": "Genetic relationships among strains of Xanthomonas campestrispv. campestrisrevealed by novel rep-PCR primers", 
    "pagination": "845-853", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb88a111d9a8bd065a2bf54179792d376179df991dd9f98785aea088c43807b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10658-004-2726-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042728514"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10658-004-2726-7", 
      "https://app.dimensions.ai/details/publication/pub.1042728514"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10658-004-2726-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10658-004-2726-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10658-004-2726-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10658-004-2726-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10658-004-2726-7'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10658-004-2726-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nd7a3858e0a8b4402aacd38ae7de4a183
4 schema:citation sg:pub.10.1007/bf01996321
5 sg:pub.10.1023/a:1019893526803
6 sg:pub.10.1038/298760a0
7 https://app.dimensions.ai/details/publication/pub.1077165982
8 https://app.dimensions.ai/details/publication/pub.1082611566
9 https://app.dimensions.ai/details/publication/pub.1082639380
10 https://app.dimensions.ai/details/publication/pub.1082958017
11 https://doi.org/10.1073/pnas.74.12.5463
12 https://doi.org/10.1093/bioinformatics/10.5.569
13 https://doi.org/10.1093/nar/18.22.6503
14 https://doi.org/10.1094/mpmi-5-022
15 https://doi.org/10.1094/pd-64-736
16 https://doi.org/10.1094/phyto-84-1449
17 https://doi.org/10.1094/phyto-84-1458
18 https://doi.org/10.1094/phyto.2001.91.5.492
19 https://doi.org/10.1099/00207713-45-3-472
20 https://doi.org/10.1099/00207713-50-2-665
21 https://doi.org/10.1099/00221287-137-7-1677
22 https://doi.org/10.1101/gr.1.1.51
23 https://doi.org/10.1111/j.1574-6968.1997.tb12563.x
24 https://doi.org/10.1128/jb.174.13.4517-4523.1992
25 schema:datePublished 2004-10
26 schema:datePublishedReg 2004-10-01
27 schema:description Novel primers for rep-PCR were developed with the original software and based on `ancient diverged periodical sequences'. Rep-PCR with these primers was applied to study genetic relationships among 51 Xanthomonas campestris strains. The strains were collected from different countries including Russia, Japan, UK, Germany and Hungary. Reference strains of three X. campestrispathovars and five other Xanthomonas species were included. Based on qualitative differences in amplification profiles, the strains were divided into four major groups. Two subgroups recognised within X. campestrispopulation were similar to RFLP haplotypes. The third subgroup included strains of two other pathovariants and Japanese isolates of X. campestris pv. campestriswhile the fourth group comprised the other species of Xanthomonas. The analysis of the diversity within X. campestris resulted in the conclusion that isolates belong to distinct clonal populations (subgroups). The differences between the subgroups of X. campestris were only slightly smaller than between species of Xanthomonas. A PCR fragment about 600 bp amplified by primer KRPN2 was found in nearly all tested strains of X. campestris.SCAR primers designed for this marker produced a single specific band for strains of X. campestris, but not for other Xanthomonas, Pseudomonas and Erwiniastrains tested. Application of the new primer set for rep-PCR offers a rapid, simple and reproducible method for identification of bacterial strains. The X. campestris-specific SCAR primers may be used in diagnostics of this important plant pathogen.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N84381280ec4c44a6856f13c2045e6891
32 Nf391799f073647d6a7a04f76aa78a34e
33 sg:journal.1023051
34 schema:name Genetic relationships among strains of Xanthomonas campestrispv. campestrisrevealed by novel rep-PCR primers
35 schema:pagination 845-853
36 schema:productId N05dad95ddfec4e9db270ef7eaef13b4b
37 N13233f6e1c7849ef93448ce98f1a22a2
38 N26cd7ba720374db188f1f202b6b1e8cd
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042728514
40 https://doi.org/10.1007/s10658-004-2726-7
41 schema:sdDatePublished 2019-04-11T00:17
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nbee62931a86a4ad3ad1f2a0737fa30dd
44 schema:url http://link.springer.com/10.1007%2Fs10658-004-2726-7
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N05dad95ddfec4e9db270ef7eaef13b4b schema:name doi
49 schema:value 10.1007/s10658-004-2726-7
50 rdf:type schema:PropertyValue
51 N13233f6e1c7849ef93448ce98f1a22a2 schema:name dimensions_id
52 schema:value pub.1042728514
53 rdf:type schema:PropertyValue
54 N26cd7ba720374db188f1f202b6b1e8cd schema:name readcube_id
55 schema:value cb88a111d9a8bd065a2bf54179792d376179df991dd9f98785aea088c43807b8
56 rdf:type schema:PropertyValue
57 N35c37d34d0f848a4af646829b7077af2 rdf:first sg:person.0721643054.10
58 rdf:rest N78c3c6b9f3194a11917a54a87480384b
59 N41179edb81d54607a03b90e4a4f56db0 rdf:first sg:person.01336240766.12
60 rdf:rest N35c37d34d0f848a4af646829b7077af2
61 N78c3c6b9f3194a11917a54a87480384b rdf:first sg:person.01151135415.38
62 rdf:rest N97cccdc697a34d8aa5b4ca4b8cc741d5
63 N84381280ec4c44a6856f13c2045e6891 schema:issueNumber 8
64 rdf:type schema:PublicationIssue
65 N97cccdc697a34d8aa5b4ca4b8cc741d5 rdf:first sg:person.01274151123.51
66 rdf:rest rdf:nil
67 Nbee62931a86a4ad3ad1f2a0737fa30dd schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nd7a3858e0a8b4402aacd38ae7de4a183 rdf:first sg:person.01333555075.35
70 rdf:rest N41179edb81d54607a03b90e4a4f56db0
71 Nf391799f073647d6a7a04f76aa78a34e schema:volumeNumber 110
72 rdf:type schema:PublicationVolume
73 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biological Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
77 schema:name Genetics
78 rdf:type schema:DefinedTerm
79 sg:journal.1023051 schema:issn 0929-1873
80 1573-8469
81 schema:name European Journal of Plant Pathology
82 rdf:type schema:Periodical
83 sg:person.01151135415.38 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
84 schema:familyName Kuznetsov
85 schema:givenName B.B.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151135415.38
87 rdf:type schema:Person
88 sg:person.01274151123.51 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
89 schema:familyName Korotkov
90 schema:givenName E.V.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51
92 rdf:type schema:Person
93 sg:person.01333555075.35 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
94 schema:familyName Tsygankova
95 schema:givenName S.V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333555075.35
97 rdf:type schema:Person
98 sg:person.01336240766.12 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
99 schema:familyName Ignatov
100 schema:givenName A.N.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336240766.12
102 rdf:type schema:Person
103 sg:person.0721643054.10 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
104 schema:familyName Boulygina
105 schema:givenName E.S.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721643054.10
107 rdf:type schema:Person
108 sg:pub.10.1007/bf01996321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003794595
109 https://doi.org/10.1007/bf01996321
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1019893526803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046389108
112 https://doi.org/10.1023/a:1019893526803
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/298760a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003893697
115 https://doi.org/10.1038/298760a0
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1077165982 schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1082611566 schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1082639380 schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1082958017 schema:CreativeWork
121 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/bioinformatics/10.5.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413429
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/nar/18.22.6503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036111593
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1094/mpmi-5-022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060079224
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1094/pd-64-736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060081110
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1094/phyto-84-1449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060109689
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1094/phyto-84-1458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060109690
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1094/phyto.2001.91.5.492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060101742
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1099/00207713-45-3-472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060349141
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1099/00207713-50-2-665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060350202
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1099/00221287-137-7-1677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060368093
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1101/gr.1.1.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028599834
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1574-6968.1997.tb12563.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018708611
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1128/jb.174.13.4517-4523.1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062720656
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
150 schema:name Russian Academy of Sciences, Centre `Bioengineering', Pr. 60-letiya, 7/1, Oktyabrya, Russia
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...