A conditional synergy index to assess biological interaction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-09

AUTHORS

Ronja Foraita

ABSTRACT

In genetic studies of complex diseases, a crucial task is to identify and quantify gene-gene interactions which are often defined as deviance from genetic additive effects. This statistical definition, however, does not need to reflect the biological interactions of genes. We propose a new method to detect gene-gene interactions. This new approach exploits the concept of synergy and antagonism that is appropriate to capture biological relationships. The conditional synergy index (CSI) describes the extent of interaction on the penetrance scale. We develop the CSI for two-locus disease models and cohort data. The index assumes genotypes to be dichotomized into risk-genotypes (exposed) and non-risk-genotypes (unexposed) but it does not assume the loci to be in linkage equilibrium. We investigate the performance of the CSI and compare it to classical epidemiological interaction measures like Rothman's synergy index (S) and the attributable proportion due to interaction (AP). In addition, the performance of an estimator of this new parameter is illustrated in a practical example. More... »

PAGES

485-494

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10654-009-9378-z

DOI

http://dx.doi.org/10.1007/s10654-009-9378-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011449243

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19669411


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penetrance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bremen", 
          "id": "https://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Bremen Institute for Prevention Research and Social Medicine (BIPS), University of Bremen, Linzer Strasse 10, 28359, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foraita", 
        "givenName": "Ronja", 
        "id": "sg:person.01320706365.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320706365.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/biostatistics/kxm010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002753828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwg113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006612984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000053352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018416828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/6002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023123823", 
          "https://doi.org/10.1038/6002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/6002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023123823", 
          "https://doi.org/10.1038/6002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2007.00360.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027009884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2006.00289.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027174350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2006.00289.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027174350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031114115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031114115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000085222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036313511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000076394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037765064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039933647", 
          "https://doi.org/10.1038/ng1345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039933647", 
          "https://doi.org/10.1038/ng1345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ypg.0b013e3280c1e5de", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040750036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ypg.0b013e3280c1e5de", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040750036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0403794101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041015450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000073735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043170992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2840-7-23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043375581", 
          "https://doi.org/10.1186/1475-2840-7-23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/11.20.2463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043443883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000106061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043845575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2272(1999)16:1<15::aid-gepi3>3.0.co;2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045304928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a009164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046110199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/321276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058623444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/498850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058781900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/92.2.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/10.4.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059672841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5271/sjweh.1945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072737267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a112252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075286946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077418832", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078626978", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a121626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080629737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-09", 
    "datePublishedReg": "2009-09-01", 
    "description": "In genetic studies of complex diseases, a crucial task is to identify and quantify gene-gene interactions which are often defined as deviance from genetic additive effects. This statistical definition, however, does not need to reflect the biological interactions of genes. We propose a new method to detect gene-gene interactions. This new approach exploits the concept of synergy and antagonism that is appropriate to capture biological relationships. The conditional synergy index (CSI) describes the extent of interaction on the penetrance scale. We develop the CSI for two-locus disease models and cohort data. The index assumes genotypes to be dichotomized into risk-genotypes (exposed) and non-risk-genotypes (unexposed) but it does not assume the loci to be in linkage equilibrium. We investigate the performance of the CSI and compare it to classical epidemiological interaction measures like Rothman's synergy index (S) and the attributable proportion due to interaction (AP). In addition, the performance of an estimator of this new parameter is illustrated in a practical example.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10654-009-9378-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095636", 
        "issn": [
          "0393-2990", 
          "1573-7284"
        ], 
        "name": "European Journal of Epidemiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "A conditional synergy index to assess biological interaction", 
    "pagination": "485-494", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10654-009-9378-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "368c67999a3b2bd002f4611b7db10f90d9b964b0d96153f37189e48e9a3d3fd2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011449243"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508062"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19669411"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10654-009-9378-z", 
      "https://app.dimensions.ai/details/publication/pub.1011449243"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56182_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10654-009-9378-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10654-009-9378-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10654-009-9378-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10654-009-9378-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10654-009-9378-z'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      63 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10654-009-9378-z schema:about N3a1ab23fab504e58a0870f6b63ee236e
2 N3b1697b942c149a2b7d2fe5f4a024be3
3 N3e809826212244db804924a3adbcc5fd
4 N6d2cd03427ea4262ba29e13b79181290
5 Nc37cf6e5b2274a5babf4647a3ff48ffd
6 Nd70a3d34f44f415bb5843edbfe8b0584
7 Ne0543c77f0674d1193b4a35e7858480c
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N8669e0c784da408bb7db3d546b79eaee
11 schema:citation sg:pub.10.1038/6002
12 sg:pub.10.1038/ng1345
13 sg:pub.10.1186/1475-2840-7-23
14 https://app.dimensions.ai/details/publication/pub.1077418832
15 https://app.dimensions.ai/details/publication/pub.1078626978
16 https://doi.org/10.1002/(sici)1098-2272(1999)16:1<15::aid-gepi3>3.0.co;2-8
17 https://doi.org/10.1002/gepi.20117
18 https://doi.org/10.1073/pnas.0403794101
19 https://doi.org/10.1086/321276
20 https://doi.org/10.1086/498850
21 https://doi.org/10.1093/aje/kwg113
22 https://doi.org/10.1093/biomet/92.2.399
23 https://doi.org/10.1093/biostatistics/kxm010
24 https://doi.org/10.1093/hmg/11.20.2463
25 https://doi.org/10.1093/ije/10.4.383
26 https://doi.org/10.1093/oxfordjournals.aje.a009164
27 https://doi.org/10.1093/oxfordjournals.aje.a112252
28 https://doi.org/10.1093/oxfordjournals.aje.a121626
29 https://doi.org/10.1097/ypg.0b013e3280c1e5de
30 https://doi.org/10.1111/j.1469-1809.2006.00289.x
31 https://doi.org/10.1111/j.1469-1809.2007.00360.x
32 https://doi.org/10.1159/000053352
33 https://doi.org/10.1159/000073735
34 https://doi.org/10.1159/000076394
35 https://doi.org/10.1159/000085222
36 https://doi.org/10.1159/000106061
37 https://doi.org/10.5271/sjweh.1945
38 schema:datePublished 2009-09
39 schema:datePublishedReg 2009-09-01
40 schema:description In genetic studies of complex diseases, a crucial task is to identify and quantify gene-gene interactions which are often defined as deviance from genetic additive effects. This statistical definition, however, does not need to reflect the biological interactions of genes. We propose a new method to detect gene-gene interactions. This new approach exploits the concept of synergy and antagonism that is appropriate to capture biological relationships. The conditional synergy index (CSI) describes the extent of interaction on the penetrance scale. We develop the CSI for two-locus disease models and cohort data. The index assumes genotypes to be dichotomized into risk-genotypes (exposed) and non-risk-genotypes (unexposed) but it does not assume the loci to be in linkage equilibrium. We investigate the performance of the CSI and compare it to classical epidemiological interaction measures like Rothman's synergy index (S) and the attributable proportion due to interaction (AP). In addition, the performance of an estimator of this new parameter is illustrated in a practical example.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N27b3b3b06fb641e693407ecae60e5f80
45 Nf1c734f8cdb4481a9eef1c90c3fd7924
46 sg:journal.1095636
47 schema:name A conditional synergy index to assess biological interaction
48 schema:pagination 485-494
49 schema:productId N47bd7874a772482e9fa85fa5649652c5
50 N7bef0cf97fce402697fe7068010a6b10
51 N8cc6b5a2aad34bba8c8ea80e1307d6b3
52 Ne19f1e2cdf9f43dab7b044bea42ae0b5
53 Nebb1c5c912934f2aa15d7979f1fe8ba2
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011449243
55 https://doi.org/10.1007/s10654-009-9378-z
56 schema:sdDatePublished 2019-04-15T09:20
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N63715c03b74240518eefc0d82a0d1b17
59 schema:url http://link.springer.com/10.1007%2Fs10654-009-9378-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N27b3b3b06fb641e693407ecae60e5f80 schema:volumeNumber 24
64 rdf:type schema:PublicationVolume
65 N3a1ab23fab504e58a0870f6b63ee236e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Models, Genetic
67 rdf:type schema:DefinedTerm
68 N3b1697b942c149a2b7d2fe5f4a024be3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Humans
70 rdf:type schema:DefinedTerm
71 N3e809826212244db804924a3adbcc5fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Genetic Predisposition to Disease
73 rdf:type schema:DefinedTerm
74 N47bd7874a772482e9fa85fa5649652c5 schema:name doi
75 schema:value 10.1007/s10654-009-9378-z
76 rdf:type schema:PropertyValue
77 N63715c03b74240518eefc0d82a0d1b17 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N6d2cd03427ea4262ba29e13b79181290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Polymorphism, Single Nucleotide
81 rdf:type schema:DefinedTerm
82 N7bef0cf97fce402697fe7068010a6b10 schema:name nlm_unique_id
83 schema:value 8508062
84 rdf:type schema:PropertyValue
85 N8669e0c784da408bb7db3d546b79eaee rdf:first sg:person.01320706365.23
86 rdf:rest rdf:nil
87 N8cc6b5a2aad34bba8c8ea80e1307d6b3 schema:name pubmed_id
88 schema:value 19669411
89 rdf:type schema:PropertyValue
90 Nc37cf6e5b2274a5babf4647a3ff48ffd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Penetrance
92 rdf:type schema:DefinedTerm
93 Nd70a3d34f44f415bb5843edbfe8b0584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Models, Statistical
95 rdf:type schema:DefinedTerm
96 Ne0543c77f0674d1193b4a35e7858480c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Genomics
98 rdf:type schema:DefinedTerm
99 Ne19f1e2cdf9f43dab7b044bea42ae0b5 schema:name readcube_id
100 schema:value 368c67999a3b2bd002f4611b7db10f90d9b964b0d96153f37189e48e9a3d3fd2
101 rdf:type schema:PropertyValue
102 Nebb1c5c912934f2aa15d7979f1fe8ba2 schema:name dimensions_id
103 schema:value pub.1011449243
104 rdf:type schema:PropertyValue
105 Nf1c734f8cdb4481a9eef1c90c3fd7924 schema:issueNumber 9
106 rdf:type schema:PublicationIssue
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
111 schema:name Genetics
112 rdf:type schema:DefinedTerm
113 sg:journal.1095636 schema:issn 0393-2990
114 1573-7284
115 schema:name European Journal of Epidemiology
116 rdf:type schema:Periodical
117 sg:person.01320706365.23 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
118 schema:familyName Foraita
119 schema:givenName Ronja
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320706365.23
121 rdf:type schema:Person
122 sg:pub.10.1038/6002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023123823
123 https://doi.org/10.1038/6002
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ng1345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039933647
126 https://doi.org/10.1038/ng1345
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1475-2840-7-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043375581
129 https://doi.org/10.1186/1475-2840-7-23
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1077418832 schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1078626978 schema:CreativeWork
133 https://doi.org/10.1002/(sici)1098-2272(1999)16:1<15::aid-gepi3>3.0.co;2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045304928
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/gepi.20117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031114115
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.0403794101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041015450
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1086/321276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058623444
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1086/498850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058781900
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/aje/kwg113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006612984
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/biomet/92.2.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421417
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/biostatistics/kxm010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002753828
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/hmg/11.20.2463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043443883
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/ije/10.4.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059672841
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/oxfordjournals.aje.a009164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110199
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/oxfordjournals.aje.a112252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075286946
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/oxfordjournals.aje.a121626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080629737
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1097/ypg.0b013e3280c1e5de schema:sameAs https://app.dimensions.ai/details/publication/pub.1040750036
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1111/j.1469-1809.2006.00289.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027174350
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1111/j.1469-1809.2007.00360.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009884
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1159/000053352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018416828
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1159/000073735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043170992
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1159/000076394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037765064
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1159/000085222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036313511
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1159/000106061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043845575
174 rdf:type schema:CreativeWork
175 https://doi.org/10.5271/sjweh.1945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072737267
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.7704.4 schema:alternateName University of Bremen
178 schema:name Bremen Institute for Prevention Research and Social Medicine (BIPS), University of Bremen, Linzer Strasse 10, 28359, Bremen, Germany
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...