Answering Cluster Investigation Requests: The Value of Simple Simulations and Statistical Tools View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-08

AUTHORS

Stéphanie Bellec, Denis Hémon, Jacqueline Clavel

ABSTRACT

Cluster investigations remain an important public health issue as the number of reported clusters and public concern increase. This study shows how statistical considerations and a simulation tool may be helpful in providing communities with proper answers to the questions usually raised in such situations: How surprising is an observed childhood cancer excess? What could be learned from a statistical test? What could be learned from a case-control study? Using real demographic and incidence-rate data together with simulations based on the hypothesis that incidence rates are homogeneous, the probabilities of observing given situations were estimated. A number of real situations have been used as examples. The results of the simulation study showed, in detail, that no reliable information on the reality of an observed excess could be obtained a posteriori from a statistical test. A cluster of the same size may or may not be surprising, depending on the spatial area and time window to which the cases are related (i.e., the expected number of cases), and depending on the size of the referential territory to which this area is associated. The lack of power of a case-control study if no particular unusual exposure is present is also addressed. The approach described in this paper can easily be reproduced and adapted to many situations. It may be of assistance to health departments conducting cluster investigations and communicating with the public. More... »

PAGES

663-671

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10654-005-7924-x

DOI

http://dx.doi.org/10.1007/s10654-005-7924-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042575589

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16151879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemiologic Methods", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Health", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "French Institute of Health and Medical Research, INSERM, U170, IFR69, Universit\u00e9 Paris XI, 16, av. Paul Vaillant-Couturier, F-94807, cedex, Villejuif, France", 
            "National French Registry of Childhood Leukemia and Lymphoma, U170, IFR69, INSERM, Universit\u00e9 Paris XI, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellec", 
        "givenName": "St\u00e9phanie", 
        "id": "sg:person.01315705010.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315705010.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "National French Registry of Childhood Leukemia and Lymphoma, U170, IFR69, INSERM, Universit\u00e9 Paris XI, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e9mon", 
        "givenName": "Denis", 
        "id": "sg:person.01204334072.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204334072.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "French Institute of Health and Medical Research, INSERM, U170, IFR69, Universit\u00e9 Paris XI, 16, av. Paul Vaillant-Couturier, F-94807, cedex, Villejuif, France", 
            "National French Registry of Childhood Leukemia and Lymphoma, U170, IFR69, INSERM, Universit\u00e9 Paris XI, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clavel", 
        "givenName": "Jacqueline", 
        "id": "sg:person.01035350601.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035350601.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-985x.00180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002766022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002766022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pbc.20106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003774347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016772064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016772064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0258(20000830)19:16<2195::aid-sim522>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033335358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0258(20000830)19:16<2195::aid-sim522>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033335358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035245773", 
          "https://doi.org/10.1038/sj.bjc.6602068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035245773", 
          "https://doi.org/10.1038/sj.bjc.6602068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00043764-199107000-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00043764-199107000-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/cnv-120003546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051901476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.90.8.1300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068877872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078714259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078714307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078714319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083072785", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08", 
    "datePublishedReg": "2005-08-01", 
    "description": "Cluster investigations remain an important public health issue as the number of reported clusters and public concern increase. This study shows how statistical considerations and a simulation tool may be helpful in providing communities with proper answers to the questions usually raised in such situations: How surprising is an observed childhood cancer excess? What could be learned from a statistical test? What could be learned from a case-control study? Using real demographic and incidence-rate data together with simulations based on the hypothesis that incidence rates are homogeneous, the probabilities of observing given situations were estimated. A number of real situations have been used as examples. The results of the simulation study showed, in detail, that no reliable information on the reality of an observed excess could be obtained a posteriori from a statistical test. A cluster of the same size may or may not be surprising, depending on the spatial area and time window to which the cases are related (i.e., the expected number of cases), and depending on the size of the referential territory to which this area is associated. The lack of power of a case-control study if no particular unusual exposure is present is also addressed. The approach described in this paper can easily be reproduced and adapted to many situations. It may be of assistance to health departments conducting cluster investigations and communicating with the public.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10654-005-7924-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095636", 
        "issn": [
          "0393-2990", 
          "1573-7284"
        ], 
        "name": "European Journal of Epidemiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Answering Cluster Investigation Requests: The Value of Simple Simulations and Statistical Tools", 
    "pagination": "663-671", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cace3bf6b78ea5bf9ad06886c33733e8c47865a00f5f6bdfbbbfd985ea3aef8b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16151879"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508062"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10654-005-7924-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042575589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10654-005-7924-x", 
      "https://app.dimensions.ai/details/publication/pub.1042575589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118332_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10654-005-7924-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10654-005-7924-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10654-005-7924-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10654-005-7924-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10654-005-7924-x'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      57 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10654-005-7924-x schema:about N1b04a76c781247afaf8e5a3f0743b024
2 N1dcae787016640dfa1803fa9f49d1153
3 N2421ade1406b421fb9eed9983aed2915
4 N3db4ac4db8cc4c189c396a50f4151265
5 N4c2bb6db4ea44c859ebf1dd2cb89d3b4
6 N501ba3189d9648458bdc2257724a081d
7 N5f2dfbc40eda4bb5b441b52f97cf7e88
8 N6dd47f02cd5845f5abc96511d0323d40
9 N73b6aed0b59646b0b3eee8be9169e064
10 N8a4cca02981c4e6b881438b594801805
11 N930818a0cf3d4c1b86a3ba358e8bc093
12 Na62eb92da94e4c2fa521f330ef44e044
13 Nb5b0c7b0c45f4f63a5163e7e61f6881f
14 Nd9bb6fbc0f9c407693dafed8bec1c460
15 Ndf7e3987298f415b84fa5058d43c18f8
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N6f67546f1d824f78a1deae7470bc15dc
19 schema:citation sg:pub.10.1038/sj.bjc.6602068
20 https://app.dimensions.ai/details/publication/pub.1083072785
21 https://doi.org/10.1002/1097-0258(20000830)19:16<2195::aid-sim522>3.0.co;2-z
22 https://doi.org/10.1002/pbc.20106
23 https://doi.org/10.1081/cnv-120003546
24 https://doi.org/10.1093/oxfordjournals.aje.a115621
25 https://doi.org/10.1093/oxfordjournals.aje.a115776
26 https://doi.org/10.1093/oxfordjournals.aje.a115790
27 https://doi.org/10.1097/00043764-199107000-00018
28 https://doi.org/10.1111/1467-985x.00179
29 https://doi.org/10.1111/1467-985x.00180
30 https://doi.org/10.1111/1467-985x.00181
31 https://doi.org/10.2105/ajph.90.8.1300
32 schema:datePublished 2005-08
33 schema:datePublishedReg 2005-08-01
34 schema:description Cluster investigations remain an important public health issue as the number of reported clusters and public concern increase. This study shows how statistical considerations and a simulation tool may be helpful in providing communities with proper answers to the questions usually raised in such situations: How surprising is an observed childhood cancer excess? What could be learned from a statistical test? What could be learned from a case-control study? Using real demographic and incidence-rate data together with simulations based on the hypothesis that incidence rates are homogeneous, the probabilities of observing given situations were estimated. A number of real situations have been used as examples. The results of the simulation study showed, in detail, that no reliable information on the reality of an observed excess could be obtained a posteriori from a statistical test. A cluster of the same size may or may not be surprising, depending on the spatial area and time window to which the cases are related (i.e., the expected number of cases), and depending on the size of the referential territory to which this area is associated. The lack of power of a case-control study if no particular unusual exposure is present is also addressed. The approach described in this paper can easily be reproduced and adapted to many situations. It may be of assistance to health departments conducting cluster investigations and communicating with the public.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N0bb5bac6bcb4453bb6e3137f35f2c770
39 Nb9c63b55dbf24b7982a25561b03db788
40 sg:journal.1095636
41 schema:name Answering Cluster Investigation Requests: The Value of Simple Simulations and Statistical Tools
42 schema:pagination 663-671
43 schema:productId N16cb9d646cb6453db26474985291d8b5
44 N52ecb0e65af5499b951df38cd9af271b
45 N7e10a1eb39414c2ab234fabc7ede953c
46 Na1e92477ddea4d83b484f6a31e7c56fe
47 Neb83c6c740224f0d85a02092e13f20fd
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042575589
49 https://doi.org/10.1007/s10654-005-7924-x
50 schema:sdDatePublished 2019-04-11T12:05
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N53d11ddea8b04d55b583959101db876d
53 schema:url http://link.springer.com/10.1007%2Fs10654-005-7924-x
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0bb5bac6bcb4453bb6e3137f35f2c770 schema:volumeNumber 20
58 rdf:type schema:PublicationVolume
59 N16cb9d646cb6453db26474985291d8b5 schema:name pubmed_id
60 schema:value 16151879
61 rdf:type schema:PropertyValue
62 N1b04a76c781247afaf8e5a3f0743b024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name France
64 rdf:type schema:DefinedTerm
65 N1dcae787016640dfa1803fa9f49d1153 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Registries
67 rdf:type schema:DefinedTerm
68 N2421ade1406b421fb9eed9983aed2915 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Adolescent
70 rdf:type schema:DefinedTerm
71 N3db4ac4db8cc4c189c396a50f4151265 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Humans
73 rdf:type schema:DefinedTerm
74 N4c2bb6db4ea44c859ebf1dd2cb89d3b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Infant, Newborn
76 rdf:type schema:DefinedTerm
77 N501ba3189d9648458bdc2257724a081d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Models, Statistical
79 rdf:type schema:DefinedTerm
80 N52ecb0e65af5499b951df38cd9af271b schema:name nlm_unique_id
81 schema:value 8508062
82 rdf:type schema:PropertyValue
83 N53d11ddea8b04d55b583959101db876d schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N5f2dfbc40eda4bb5b441b52f97cf7e88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Child
87 rdf:type schema:DefinedTerm
88 N6dd47f02cd5845f5abc96511d0323d40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Incidence
90 rdf:type schema:DefinedTerm
91 N6f67546f1d824f78a1deae7470bc15dc rdf:first sg:person.01315705010.39
92 rdf:rest N87c04a6fec764cbf9a122e26dd26f8c1
93 N73b6aed0b59646b0b3eee8be9169e064 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Neoplasms
95 rdf:type schema:DefinedTerm
96 N7e10a1eb39414c2ab234fabc7ede953c schema:name readcube_id
97 schema:value cace3bf6b78ea5bf9ad06886c33733e8c47865a00f5f6bdfbbbfd985ea3aef8b
98 rdf:type schema:PropertyValue
99 N87c04a6fec764cbf9a122e26dd26f8c1 rdf:first sg:person.01204334072.81
100 rdf:rest Ncd313a85b77a4e639d66ba20b381fead
101 N8a4cca02981c4e6b881438b594801805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cluster Analysis
103 rdf:type schema:DefinedTerm
104 N930818a0cf3d4c1b86a3ba358e8bc093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Child, Preschool
106 rdf:type schema:DefinedTerm
107 Na1e92477ddea4d83b484f6a31e7c56fe schema:name dimensions_id
108 schema:value pub.1042575589
109 rdf:type schema:PropertyValue
110 Na62eb92da94e4c2fa521f330ef44e044 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Case-Control Studies
112 rdf:type schema:DefinedTerm
113 Nb5b0c7b0c45f4f63a5163e7e61f6881f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Epidemiologic Methods
115 rdf:type schema:DefinedTerm
116 Nb9c63b55dbf24b7982a25561b03db788 schema:issueNumber 8
117 rdf:type schema:PublicationIssue
118 Ncd313a85b77a4e639d66ba20b381fead rdf:first sg:person.01035350601.10
119 rdf:rest rdf:nil
120 Nd9bb6fbc0f9c407693dafed8bec1c460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Public Health
122 rdf:type schema:DefinedTerm
123 Ndf7e3987298f415b84fa5058d43c18f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Infant
125 rdf:type schema:DefinedTerm
126 Neb83c6c740224f0d85a02092e13f20fd schema:name doi
127 schema:value 10.1007/s10654-005-7924-x
128 rdf:type schema:PropertyValue
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
133 schema:name Public Health and Health Services
134 rdf:type schema:DefinedTerm
135 sg:journal.1095636 schema:issn 0393-2990
136 1573-7284
137 schema:name European Journal of Epidemiology
138 rdf:type schema:Periodical
139 sg:person.01035350601.10 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
140 schema:familyName Clavel
141 schema:givenName Jacqueline
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035350601.10
143 rdf:type schema:Person
144 sg:person.01204334072.81 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
145 schema:familyName Hémon
146 schema:givenName Denis
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204334072.81
148 rdf:type schema:Person
149 sg:person.01315705010.39 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
150 schema:familyName Bellec
151 schema:givenName Stéphanie
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315705010.39
153 rdf:type schema:Person
154 sg:pub.10.1038/sj.bjc.6602068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035245773
155 https://doi.org/10.1038/sj.bjc.6602068
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1083072785 schema:CreativeWork
158 https://doi.org/10.1002/1097-0258(20000830)19:16<2195::aid-sim522>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033335358
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/pbc.20106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003774347
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1081/cnv-120003546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051901476
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/oxfordjournals.aje.a115621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078714259
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/oxfordjournals.aje.a115776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078714307
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/oxfordjournals.aje.a115790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078714319
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1097/00043764-199107000-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048547104
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/1467-985x.00179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016772064
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/1467-985x.00180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002766022
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/1467-985x.00181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008151763
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2105/ajph.90.8.1300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068877872
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
181 schema:name French Institute of Health and Medical Research, INSERM, U170, IFR69, Université Paris XI, 16, av. Paul Vaillant-Couturier, F-94807, cedex, Villejuif, France
182 National French Registry of Childhood Leukemia and Lymphoma, U170, IFR69, INSERM, Université Paris XI, Villejuif, France
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...