A novel technique for experimental modal analysis of barotropic seiches for assessing lake energetics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-26

AUTHORS

Zachariah Wynne, Thomas Reynolds, Damien Bouffard, Geoffrey Schladow, Danielle Wain

ABSTRACT

Basin scale seiches in lakes are important elements of the total energy budget and are a driver of fluxes of important ecological parameters, such as oxygen, nutrients, and sediments. At present, the extraction of the damping ratios of surface seiches, which are directly related to the capacity of seiches to drive these fluxes through the increased mixing of the water column, is reliant on spectral analysis which may be heavily influenced by the transformation of water level records from the time domain to the frequency domain, and which are sensitive to the level of noise present within the data. Existing spectral-based methods struggle to extract the periods of surface seiches which are of similar magnitude due to the overlap between their spectral responses. In this study, the principles of operational modal analysis, through the random decrement technique (RDT), currently used primarily in the analysis of high rise structures and in the aeronautical industry and not previously applied within the fields of limnology or ecology, are applied to barotropic seiches through the analysis of water level data for Lake Geneva, Switzerland, and Lake Tahoe, USA. Using this technique, the autocorrelation of the measurements is estimated using the RDT and modal analysis can then be carried out on this time-domain signal to estimate periods of the dominant surface seiches and the corresponding damping ratios. The estimated periods show good agreement with experimental results obtained through conventional spectral techniques and consistent damping ratios are obtained for the dominant surface seiche of Lake Tahoe. The effect of input parameters is discussed, using data for the two lakes, alongside discussion of the application of RDT to the study of internal seiches and current barriers to its application. RDT has great potential for the analysis of both surface and internal seiches, offering a method through which accurate damping ratios of seiche oscillations may be obtained using readily available data without necessitating spectral analysis. More... »

PAGES

1-30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10652-019-09677-x

DOI

http://dx.doi.org/10.1007/s10652-019-09677-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113008891


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Department of Architecture and Civil Engineering, University of Bath, Claverton Down, BA2 7AY, Bath, UK", 
            "School of Engineering, University of Edinburgh, King\u2019s Buildings, EH9 3FG, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wynne", 
        "givenName": "Zachariah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Engineering, University of Edinburgh, King\u2019s Buildings, EH9 3FG, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reynolds", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Aquatic Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.418656.8", 
          "name": [
            "Department of Surface Waters Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouffard", 
        "givenName": "Damien", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Civil and Environmental Engineering, University of California, One Shields Avenue, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schladow", 
        "givenName": "Geoffrey", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colby College", 
          "id": "https://www.grid.ac/institutes/grid.254333.0", 
          "name": [
            "Department of Architecture and Civil Engineering, University of Bath, Claverton Down, BA2 7AY, Bath, UK", 
            "7 Lakes Alliance, 137 Main Street, 04917, Belgrade, ME, USA", 
            "Colby College, Mayflower Hill Drive, 04901, Waterville, ME, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wain", 
        "givenName": "Danielle", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4319/lo.1992.37.8.1705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001410340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-19-2605-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003627048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-075065079-3/50009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008274631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07438140509354450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010245175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-075065079-3/50008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013009798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csr.2004.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013805327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95wr03245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014274004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1976.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015573536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6105(96)00004-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016657788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2008.53.4.1574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020827656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-940033-54-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021460714", 
          "https://doi.org/10.1007/978-1-940033-54-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3739/rikusui.40.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022639928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02538152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022734319", 
          "https://doi.org/10.1007/bf02538152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023479350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1997)027<0849:odobst>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023713306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6105(96)00003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028602457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jc000942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029030581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-012-0600-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032786585", 
          "https://doi.org/10.1007/s10584-012-0600-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1988.33.6.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035275078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2005.50.1.0207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042039074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-021808-0.50006-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042626971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999gl011119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042977726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-4343(02)00031-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045977613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10178-011-0051-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048239214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.57251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048658333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016wr019194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050681569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1999.2300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053192909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)st.1943-541x.0001582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057643224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3256341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062113842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.18217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062237533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812819307_0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088712598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5962/bhl.title.7402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099517867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103250261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470750506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109492174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109492174", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-26", 
    "datePublishedReg": "2019-03-26", 
    "description": "Basin scale seiches in lakes are important elements of the total energy budget and are a driver of fluxes of important ecological parameters, such as oxygen, nutrients, and sediments. At present, the extraction of the damping ratios of surface seiches, which are directly related to the capacity of seiches to drive these fluxes through the increased mixing of the water column, is reliant on spectral analysis which may be heavily influenced by the transformation of water level records from the time domain to the frequency domain, and which are sensitive to the level of noise present within the data. Existing spectral-based methods struggle to extract the periods of surface seiches which are of similar magnitude due to the overlap between their spectral responses. In this study, the principles of operational modal analysis, through the random decrement technique (RDT), currently used primarily in the analysis of high rise structures and in the aeronautical industry and not previously applied within the fields of limnology or ecology, are applied to barotropic seiches through the analysis of water level data for Lake Geneva, Switzerland, and Lake Tahoe, USA. Using this technique, the autocorrelation of the measurements is estimated using the RDT and modal analysis can then be carried out on this time-domain signal to estimate periods of the dominant surface seiches and the corresponding damping ratios. The estimated periods show good agreement with experimental results obtained through conventional spectral techniques and consistent damping ratios are obtained for the dominant surface seiche of Lake Tahoe. The effect of input parameters is discussed, using data for the two lakes, alongside discussion of the application of RDT to the study of internal seiches and current barriers to its application. RDT has great potential for the analysis of both surface and internal seiches, offering a method through which accurate damping ratios of seiche oscillations may be obtained using readily available data without necessitating spectral analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10652-019-09677-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3791817", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7748727", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044514", 
        "issn": [
          "1567-7419", 
          "1573-1510"
        ], 
        "name": "Environmental Fluid Mechanics", 
        "type": "Periodical"
      }
    ], 
    "name": "A novel technique for experimental modal analysis of barotropic seiches for assessing lake energetics", 
    "pagination": "1-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e69193a9260bb4aad5b7603c91bae0109140e0817dfaa6332cd0d28cedd86c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10652-019-09677-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113008891"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10652-019-09677-x", 
      "https://app.dimensions.ai/details/publication/pub.1113008891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88253_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10652-019-09677-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10652-019-09677-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10652-019-09677-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10652-019-09677-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10652-019-09677-x'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10652-019-09677-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N402b3d383fa24131a5f8c122e2eee75c
4 schema:citation sg:pub.10.1007/978-1-940033-54-9
5 sg:pub.10.1007/bf02538152
6 sg:pub.10.1007/s10584-012-0600-8
7 https://app.dimensions.ai/details/publication/pub.1109492174
8 https://doi.org/10.1002/2016wr019194
9 https://doi.org/10.1002/9780470750506
10 https://doi.org/10.1002/9781118032428
11 https://doi.org/10.1006/jsvi.1999.2300
12 https://doi.org/10.1016/0167-6105(96)00003-7
13 https://doi.org/10.1016/0167-6105(96)00004-9
14 https://doi.org/10.1016/b978-0-12-021808-0.50006-1
15 https://doi.org/10.1016/b978-075065079-3/50008-5
16 https://doi.org/10.1016/b978-075065079-3/50009-7
17 https://doi.org/10.1016/j.csr.2004.09.008
18 https://doi.org/10.1016/j.ymssp.2011.02.002
19 https://doi.org/10.1016/s0278-4343(02)00031-6
20 https://doi.org/10.1029/1999gl011119
21 https://doi.org/10.1029/2001jc000942
22 https://doi.org/10.1029/95wr03245
23 https://doi.org/10.1061/(asce)st.1943-541x.0001582
24 https://doi.org/10.1080/07438140509354450
25 https://doi.org/10.1098/rsta.1976.0020
26 https://doi.org/10.1115/1.3256341
27 https://doi.org/10.1119/1.18217
28 https://doi.org/10.1142/9789812819307_0009
29 https://doi.org/10.1175/1520-0485(1997)027<0849:odobst>2.0.co;2
30 https://doi.org/10.2478/v10178-011-0051-y
31 https://doi.org/10.2514/3.57251
32 https://doi.org/10.3739/rikusui.40.102
33 https://doi.org/10.4319/lo.1988.33.6.1321
34 https://doi.org/10.4319/lo.1992.37.8.1705
35 https://doi.org/10.4319/lo.2005.50.1.0207
36 https://doi.org/10.4319/lo.2008.53.4.1574
37 https://doi.org/10.5194/hess-19-2605-2015
38 https://doi.org/10.5962/bhl.title.7402
39 schema:datePublished 2019-03-26
40 schema:datePublishedReg 2019-03-26
41 schema:description Basin scale seiches in lakes are important elements of the total energy budget and are a driver of fluxes of important ecological parameters, such as oxygen, nutrients, and sediments. At present, the extraction of the damping ratios of surface seiches, which are directly related to the capacity of seiches to drive these fluxes through the increased mixing of the water column, is reliant on spectral analysis which may be heavily influenced by the transformation of water level records from the time domain to the frequency domain, and which are sensitive to the level of noise present within the data. Existing spectral-based methods struggle to extract the periods of surface seiches which are of similar magnitude due to the overlap between their spectral responses. In this study, the principles of operational modal analysis, through the random decrement technique (RDT), currently used primarily in the analysis of high rise structures and in the aeronautical industry and not previously applied within the fields of limnology or ecology, are applied to barotropic seiches through the analysis of water level data for Lake Geneva, Switzerland, and Lake Tahoe, USA. Using this technique, the autocorrelation of the measurements is estimated using the RDT and modal analysis can then be carried out on this time-domain signal to estimate periods of the dominant surface seiches and the corresponding damping ratios. The estimated periods show good agreement with experimental results obtained through conventional spectral techniques and consistent damping ratios are obtained for the dominant surface seiche of Lake Tahoe. The effect of input parameters is discussed, using data for the two lakes, alongside discussion of the application of RDT to the study of internal seiches and current barriers to its application. RDT has great potential for the analysis of both surface and internal seiches, offering a method through which accurate damping ratios of seiche oscillations may be obtained using readily available data without necessitating spectral analysis.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1044514
46 schema:name A novel technique for experimental modal analysis of barotropic seiches for assessing lake energetics
47 schema:pagination 1-30
48 schema:productId N0b0fce45aa8c4e8fb1bca32043339964
49 Nc31f998fe0fc407bb370c057bc553cc8
50 Ne5bc30c8165545abba296d892b56e4f2
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113008891
52 https://doi.org/10.1007/s10652-019-09677-x
53 schema:sdDatePublished 2019-04-11T13:11
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N92e3d234fa0c4dd99ae54b0b0f13b852
56 schema:url https://link.springer.com/10.1007%2Fs10652-019-09677-x
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0b0fce45aa8c4e8fb1bca32043339964 schema:name doi
61 schema:value 10.1007/s10652-019-09677-x
62 rdf:type schema:PropertyValue
63 N0dec0a4f9b194d36aca20a9817a43bf5 schema:affiliation https://www.grid.ac/institutes/grid.254333.0
64 schema:familyName Wain
65 schema:givenName Danielle
66 rdf:type schema:Person
67 N0ffacf28674d4c75b111628552575347 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
68 schema:familyName Reynolds
69 schema:givenName Thomas
70 rdf:type schema:Person
71 N1f9c006ae4394cd9ae914760d42220eb schema:affiliation https://www.grid.ac/institutes/grid.4305.2
72 schema:familyName Wynne
73 schema:givenName Zachariah
74 rdf:type schema:Person
75 N1fb588bef23a48ce854f3affd7edee31 schema:affiliation https://www.grid.ac/institutes/grid.418656.8
76 schema:familyName Bouffard
77 schema:givenName Damien
78 rdf:type schema:Person
79 N3a145e0837ef4b90a6aa5d4a86c353db rdf:first N8a8087a9814a42818cc8ca719286d856
80 rdf:rest Nf25fa4bc6f2643d38c15f2528c5c0f1c
81 N3d52377d42754f1f96344bd67af95073 rdf:first N0ffacf28674d4c75b111628552575347
82 rdf:rest N81d777901e7a4180b5fa3d636465bb3b
83 N402b3d383fa24131a5f8c122e2eee75c rdf:first N1f9c006ae4394cd9ae914760d42220eb
84 rdf:rest N3d52377d42754f1f96344bd67af95073
85 N81d777901e7a4180b5fa3d636465bb3b rdf:first N1fb588bef23a48ce854f3affd7edee31
86 rdf:rest N3a145e0837ef4b90a6aa5d4a86c353db
87 N8a8087a9814a42818cc8ca719286d856 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
88 schema:familyName Schladow
89 schema:givenName Geoffrey
90 rdf:type schema:Person
91 N92e3d234fa0c4dd99ae54b0b0f13b852 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nc31f998fe0fc407bb370c057bc553cc8 schema:name readcube_id
94 schema:value 9e69193a9260bb4aad5b7603c91bae0109140e0817dfaa6332cd0d28cedd86c2
95 rdf:type schema:PropertyValue
96 Ne5bc30c8165545abba296d892b56e4f2 schema:name dimensions_id
97 schema:value pub.1113008891
98 rdf:type schema:PropertyValue
99 Nf25fa4bc6f2643d38c15f2528c5c0f1c rdf:first N0dec0a4f9b194d36aca20a9817a43bf5
100 rdf:rest rdf:nil
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:grant.3791817 http://pending.schema.org/fundedItem sg:pub.10.1007/s10652-019-09677-x
108 rdf:type schema:MonetaryGrant
109 sg:grant.7748727 http://pending.schema.org/fundedItem sg:pub.10.1007/s10652-019-09677-x
110 rdf:type schema:MonetaryGrant
111 sg:journal.1044514 schema:issn 1567-7419
112 1573-1510
113 schema:name Environmental Fluid Mechanics
114 rdf:type schema:Periodical
115 sg:pub.10.1007/978-1-940033-54-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021460714
116 https://doi.org/10.1007/978-1-940033-54-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02538152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022734319
119 https://doi.org/10.1007/bf02538152
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10584-012-0600-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032786585
122 https://doi.org/10.1007/s10584-012-0600-8
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1109492174 schema:CreativeWork
125 https://doi.org/10.1002/2016wr019194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050681569
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/9780470750506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109492174
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/9781118032428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103250261
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jsvi.1999.2300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053192909
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0167-6105(96)00003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028602457
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0167-6105(96)00004-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016657788
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/b978-0-12-021808-0.50006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042626971
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/b978-075065079-3/50008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013009798
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/b978-075065079-3/50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008274631
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.csr.2004.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013805327
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ymssp.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023479350
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0278-4343(02)00031-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045977613
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1029/1999gl011119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042977726
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/2001jc000942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029030581
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1029/95wr03245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014274004
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1061/(asce)st.1943-541x.0001582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057643224
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/07438140509354450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010245175
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1098/rsta.1976.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015573536
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/1.3256341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062113842
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1119/1.18217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062237533
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1142/9789812819307_0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088712598
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1175/1520-0485(1997)027<0849:odobst>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023713306
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2478/v10178-011-0051-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048239214
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2514/3.57251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048658333
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3739/rikusui.40.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022639928
174 rdf:type schema:CreativeWork
175 https://doi.org/10.4319/lo.1988.33.6.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035275078
176 rdf:type schema:CreativeWork
177 https://doi.org/10.4319/lo.1992.37.8.1705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001410340
178 rdf:type schema:CreativeWork
179 https://doi.org/10.4319/lo.2005.50.1.0207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042039074
180 rdf:type schema:CreativeWork
181 https://doi.org/10.4319/lo.2008.53.4.1574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020827656
182 rdf:type schema:CreativeWork
183 https://doi.org/10.5194/hess-19-2605-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003627048
184 rdf:type schema:CreativeWork
185 https://doi.org/10.5962/bhl.title.7402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099517867
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.254333.0 schema:alternateName Colby College
188 schema:name 7 Lakes Alliance, 137 Main Street, 04917, Belgrade, ME, USA
189 Colby College, Mayflower Hill Drive, 04901, Waterville, ME, USA
190 Department of Architecture and Civil Engineering, University of Bath, Claverton Down, BA2 7AY, Bath, UK
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
193 schema:name Department of Civil and Environmental Engineering, University of California, One Shields Avenue, 95616, Davis, CA, USA
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.418656.8 schema:alternateName Swiss Federal Institute of Aquatic Science and Technology
196 schema:name Department of Surface Waters Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
199 schema:name Department of Architecture and Civil Engineering, University of Bath, Claverton Down, BA2 7AY, Bath, UK
200 School of Engineering, University of Edinburgh, King’s Buildings, EH9 3FG, Edinburgh, UK
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...