Randomly selected order statistics in ranked set sampling: A less expensive comparable alternative to simple random sampling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Saeid Amiri, Mohammad Jafari Jozani, Reza Modarres

ABSTRACT

Rank-based sampling designs are powerful alternatives to simple random sampling (SRS) and often provide large improvements in the precision of estimators. In many environmental, ecological, agricultural, industrial and/or medical applications the interest lies in sampling designs that are cheaper than SRS and provide comparable estimates. In this paper, we propose a new variation of ranked set sampling (RSS) for estimating the population mean based on the random selection technique to measure a smaller number of observations than RSS design. We study the properties of the population mean estimator using the proposed design and provide conditions under which the mean estimator performs better than SRS and some existing rank-based sampling designs. Theoretical results are augmented with some numerical studies and a real-life example, where we also study the performance of our proposed design under perfect and imperfect ranking situations. More... »

PAGES

237-256

References to SciGraph publications

  • 2004. Ranked Set Sampling, Theory and Applications in NONE
  • 2003-09. Ranked set sampling based on binary water quality data with covariates in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10651-018-0402-x

    DOI

    http://dx.doi.org/10.1007/s10651-018-0402-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101104049


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Green Bay", 
              "id": "https://www.grid.ac/institutes/grid.267461.0", 
              "name": [
                "Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amiri", 
            "givenName": "Saeid", 
            "id": "sg:person.01231561746.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231561746.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manitoba", 
              "id": "https://www.grid.ac/institutes/grid.21613.37", 
              "name": [
                "Department of Statistics, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jafari\u00a0Jozani", 
            "givenName": "Mohammad", 
            "id": "sg:person.014356554721.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356554721.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "George Washington University", 
              "id": "https://www.grid.ac/institutes/grid.253615.6", 
              "name": [
                "Department of Statistics, The George Washington University, Washington, DC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Modarres", 
            "givenName": "Reza", 
            "id": "sg:person.013746641125.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013746641125.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/00949650412331299193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001789657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7152(03)00013-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005977868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7152(03)00013-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005977868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1198/1085711032156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006879529", 
              "https://doi.org/10.1198/1085711032156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-4036(200106)43:3<357::aid-bimj357>3.0.co;2-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009855217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3758(98)00136-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010261898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1023577356", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21664-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023577356", 
              "https://doi.org/10.1007/978-0-387-21664-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21664-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023577356", 
              "https://doi.org/10.1007/978-0-387-21664-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/ar9520385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024491920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-842x.1976.tb00963.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027215700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/sjos.12140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040474270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-3758(83)90035-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041536805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280215601458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054045416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280215601458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054045416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0008068319970103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090709161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0008068319970103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090709161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9780898719062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098552225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109491862", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109491862", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "Rank-based sampling designs are powerful alternatives to simple random sampling (SRS) and often provide large improvements in the precision of estimators. In many environmental, ecological, agricultural, industrial and/or medical applications the interest lies in sampling designs that are cheaper than SRS and provide comparable estimates. In this paper, we propose a new variation of ranked set sampling (RSS) for estimating the population mean based on the random selection technique to measure a smaller number of observations than RSS design. We study the properties of the population mean estimator using the proposed design and provide conditions under which the mean estimator performs better than SRS and some existing rank-based sampling designs. Theoretical results are augmented with some numerical studies and a real-life example, where we also study the performance of our proposed design under perfect and imperfect ranking situations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10651-018-0402-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1356907", 
            "issn": [
              "1573-3009", 
              "1352-8505"
            ], 
            "name": "Environmental and Ecological Statistics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Randomly selected order statistics in ranked set sampling: A less expensive comparable alternative to simple random sampling", 
        "pagination": "237-256", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5378b11343f19e92a3be6985840ba770e2200a1ed9d09e680fe8e5e307af6fe7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10651-018-0402-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101104049"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10651-018-0402-x", 
          "https://app.dimensions.ai/details/publication/pub.1101104049"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47976_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10651-018-0402-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10651-018-0402-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10651-018-0402-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10651-018-0402-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10651-018-0402-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10651-018-0402-x schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Naab180283f0b4ec39e0c71069ff3593a
    4 schema:citation sg:pub.10.1007/978-0-387-21664-5
    5 sg:pub.10.1198/1085711032156
    6 https://app.dimensions.ai/details/publication/pub.1023577356
    7 https://app.dimensions.ai/details/publication/pub.1109491862
    8 https://doi.org/10.1002/1521-4036(200106)43:3<357::aid-bimj357>3.0.co;2-q
    9 https://doi.org/10.1016/0378-3758(83)90035-6
    10 https://doi.org/10.1016/s0167-7152(03)00013-0
    11 https://doi.org/10.1016/s0378-3758(98)00136-0
    12 https://doi.org/10.1071/ar9520385
    13 https://doi.org/10.1080/00949650412331299193
    14 https://doi.org/10.1111/j.1467-842x.1976.tb00963.x
    15 https://doi.org/10.1111/sjos.12140
    16 https://doi.org/10.1137/1.9780898719062
    17 https://doi.org/10.1177/0008068319970103
    18 https://doi.org/10.1177/0962280215601458
    19 schema:datePublished 2018-06
    20 schema:datePublishedReg 2018-06-01
    21 schema:description Rank-based sampling designs are powerful alternatives to simple random sampling (SRS) and often provide large improvements in the precision of estimators. In many environmental, ecological, agricultural, industrial and/or medical applications the interest lies in sampling designs that are cheaper than SRS and provide comparable estimates. In this paper, we propose a new variation of ranked set sampling (RSS) for estimating the population mean based on the random selection technique to measure a smaller number of observations than RSS design. We study the properties of the population mean estimator using the proposed design and provide conditions under which the mean estimator performs better than SRS and some existing rank-based sampling designs. Theoretical results are augmented with some numerical studies and a real-life example, where we also study the performance of our proposed design under perfect and imperfect ranking situations.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N650f15621cf74bd78b7e4d3bca57b227
    26 Nbd3cc1b7793141c1be3e66bec75501c0
    27 sg:journal.1356907
    28 schema:name Randomly selected order statistics in ranked set sampling: A less expensive comparable alternative to simple random sampling
    29 schema:pagination 237-256
    30 schema:productId N500d0d4676cf4d7aa61b1eb885d3adcc
    31 N5433af340ce4417097135d96280d356a
    32 Nb166721f8cff414998afb4d49d39f946
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101104049
    34 https://doi.org/10.1007/s10651-018-0402-x
    35 schema:sdDatePublished 2019-04-11T09:11
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N9c834445b5c440518094f3ccb3c90568
    38 schema:url https://link.springer.com/10.1007%2Fs10651-018-0402-x
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N500d0d4676cf4d7aa61b1eb885d3adcc schema:name doi
    43 schema:value 10.1007/s10651-018-0402-x
    44 rdf:type schema:PropertyValue
    45 N5433af340ce4417097135d96280d356a schema:name readcube_id
    46 schema:value 5378b11343f19e92a3be6985840ba770e2200a1ed9d09e680fe8e5e307af6fe7
    47 rdf:type schema:PropertyValue
    48 N650f15621cf74bd78b7e4d3bca57b227 schema:volumeNumber 25
    49 rdf:type schema:PublicationVolume
    50 N9c834445b5c440518094f3ccb3c90568 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Naab180283f0b4ec39e0c71069ff3593a rdf:first sg:person.01231561746.07
    53 rdf:rest Ndc409c877d50437ab7d944bd34d74876
    54 Nb166721f8cff414998afb4d49d39f946 schema:name dimensions_id
    55 schema:value pub.1101104049
    56 rdf:type schema:PropertyValue
    57 Nbd3cc1b7793141c1be3e66bec75501c0 schema:issueNumber 2
    58 rdf:type schema:PublicationIssue
    59 Nce5ee2c35c264387927e749080b6d7d4 rdf:first sg:person.013746641125.26
    60 rdf:rest rdf:nil
    61 Ndc409c877d50437ab7d944bd34d74876 rdf:first sg:person.014356554721.35
    62 rdf:rest Nce5ee2c35c264387927e749080b6d7d4
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Statistics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1356907 schema:issn 1352-8505
    70 1573-3009
    71 schema:name Environmental and Ecological Statistics
    72 rdf:type schema:Periodical
    73 sg:person.01231561746.07 schema:affiliation https://www.grid.ac/institutes/grid.267461.0
    74 schema:familyName Amiri
    75 schema:givenName Saeid
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231561746.07
    77 rdf:type schema:Person
    78 sg:person.013746641125.26 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
    79 schema:familyName Modarres
    80 schema:givenName Reza
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013746641125.26
    82 rdf:type schema:Person
    83 sg:person.014356554721.35 schema:affiliation https://www.grid.ac/institutes/grid.21613.37
    84 schema:familyName Jafari Jozani
    85 schema:givenName Mohammad
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356554721.35
    87 rdf:type schema:Person
    88 sg:pub.10.1007/978-0-387-21664-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023577356
    89 https://doi.org/10.1007/978-0-387-21664-5
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1198/1085711032156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006879529
    92 https://doi.org/10.1198/1085711032156
    93 rdf:type schema:CreativeWork
    94 https://app.dimensions.ai/details/publication/pub.1023577356 schema:CreativeWork
    95 https://app.dimensions.ai/details/publication/pub.1109491862 schema:CreativeWork
    96 https://doi.org/10.1002/1521-4036(200106)43:3<357::aid-bimj357>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1009855217
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/0378-3758(83)90035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041536805
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/s0167-7152(03)00013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005977868
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/s0378-3758(98)00136-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010261898
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1071/ar9520385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491920
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1080/00949650412331299193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001789657
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1111/j.1467-842x.1976.tb00963.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027215700
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1111/sjos.12140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040474270
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1137/1.9780898719062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098552225
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1177/0008068319970103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090709161
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1177/0962280215601458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054045416
    117 rdf:type schema:CreativeWork
    118 https://www.grid.ac/institutes/grid.21613.37 schema:alternateName University of Manitoba
    119 schema:name Department of Statistics, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
    120 rdf:type schema:Organization
    121 https://www.grid.ac/institutes/grid.253615.6 schema:alternateName George Washington University
    122 schema:name Department of Statistics, The George Washington University, Washington, DC, USA
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.267461.0 schema:alternateName University of Wisconsin–Green Bay
    125 schema:name Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...