Nonparametric mean estimation using partially ordered sets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Jesse Frey

ABSTRACT

In ranked-set sampling (RSS), the ranker must give a complete ranking of the units in each set. In this paper, we consider a modification of RSS that allows the ranker to declare ties. Our sampling method is simply to break the ties at random so that we obtain a standard ranked-set sample, but also to record the tie structure for use in estimation. We propose several different nonparametric mean estimators that incorporate the tie information, and we show that the best of these estimators is substantially more efficient than estimators that ignore the ties. As part of our comparison of estimators, we develop new results about models for ties in rankings. We also show that there are settings where, to achieve more efficient estimation, ties should be declared not just when the ranker is actually unsure about how units rank, but also when the ranker is sure about the ranking, but believes that the units are close. More... »

PAGES

309-326

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10651-012-0188-1

DOI

http://dx.doi.org/10.1007/s10651-012-0188-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038751357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Villanova University", 
          "id": "https://www.grid.ac/institutes/grid.267871.d", 
          "name": [
            "Department of Mathematics and Statistics, Villanova University, 19085, Villanova, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "Jesse", 
        "id": "sg:person.011065637437.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011065637437.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2004.00144.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000288773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2004.00144.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000288773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1198/1085711032156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006879529", 
          "https://doi.org/10.1198/1085711032156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00569358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012567782", 
          "https://doi.org/10.1007/bf00569358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2010.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016033860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10651-010-0161-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020025152", 
          "https://doi.org/10.1007/s10651-010-0161-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/ar9520385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024491920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2006.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025085088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032210417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032210417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00900.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038685876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485250701437232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048488722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1994.10476458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/000313005x54180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2556166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069991898"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "In ranked-set sampling (RSS), the ranker must give a complete ranking of the units in each set. In this paper, we consider a modification of RSS that allows the ranker to declare ties. Our sampling method is simply to break the ties at random so that we obtain a standard ranked-set sample, but also to record the tie structure for use in estimation. We propose several different nonparametric mean estimators that incorporate the tie information, and we show that the best of these estimators is substantially more efficient than estimators that ignore the ties. As part of our comparison of estimators, we develop new results about models for ties in rankings. We also show that there are settings where, to achieve more efficient estimation, ties should be declared not just when the ranker is actually unsure about how units rank, but also when the ranker is sure about the ranking, but believes that the units are close.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10651-012-0188-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356907", 
        "issn": [
          "1573-3009", 
          "1352-8505"
        ], 
        "name": "Environmental and Ecological Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Nonparametric mean estimation using partially ordered sets", 
    "pagination": "309-326", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b8986dbc28c09eafccf25c35aeac211ebdafad6f5505c900c604073f8fad35bf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10651-012-0188-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038751357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10651-012-0188-1", 
      "https://app.dimensions.ai/details/publication/pub.1038751357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10651-012-0188-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10651-012-0188-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10651-012-0188-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10651-012-0188-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10651-012-0188-1'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10651-012-0188-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N59ec8551d4aa415995c915ba16c2a2f7
4 schema:citation sg:pub.10.1007/bf00569358
5 sg:pub.10.1007/s10651-010-0161-9
6 sg:pub.10.1198/1085711032156
7 https://doi.org/10.1002/sim.2158
8 https://doi.org/10.1016/j.jspi.2006.02.013
9 https://doi.org/10.1016/j.jspi.2010.08.002
10 https://doi.org/10.1071/ar9520385
11 https://doi.org/10.1080/01621459.1994.10476458
12 https://doi.org/10.1080/10485250701437232
13 https://doi.org/10.1111/j.0006-341x.2004.00144.x
14 https://doi.org/10.1111/j.1541-0420.2007.00900.x
15 https://doi.org/10.1198/000313005x54180
16 https://doi.org/10.1198/016214506000000410
17 https://doi.org/10.2307/2556166
18 schema:datePublished 2012-09
19 schema:datePublishedReg 2012-09-01
20 schema:description In ranked-set sampling (RSS), the ranker must give a complete ranking of the units in each set. In this paper, we consider a modification of RSS that allows the ranker to declare ties. Our sampling method is simply to break the ties at random so that we obtain a standard ranked-set sample, but also to record the tie structure for use in estimation. We propose several different nonparametric mean estimators that incorporate the tie information, and we show that the best of these estimators is substantially more efficient than estimators that ignore the ties. As part of our comparison of estimators, we develop new results about models for ties in rankings. We also show that there are settings where, to achieve more efficient estimation, ties should be declared not just when the ranker is actually unsure about how units rank, but also when the ranker is sure about the ranking, but believes that the units are close.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N2397657500ee462f96f46c6f971ea6dc
25 N646a16566ad04b10bd3ab539a893a0ac
26 sg:journal.1356907
27 schema:name Nonparametric mean estimation using partially ordered sets
28 schema:pagination 309-326
29 schema:productId N10afb95895fb4c15af1b811ab8058242
30 N1431d20a6291477390259d2003ae1621
31 N45bf72002f4e485fb8d377e6c4832bbe
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038751357
33 https://doi.org/10.1007/s10651-012-0188-1
34 schema:sdDatePublished 2019-04-10T17:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N19eed00174d0445da8fc7f6573a7303e
37 schema:url http://link.springer.com/10.1007%2Fs10651-012-0188-1
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N10afb95895fb4c15af1b811ab8058242 schema:name doi
42 schema:value 10.1007/s10651-012-0188-1
43 rdf:type schema:PropertyValue
44 N1431d20a6291477390259d2003ae1621 schema:name dimensions_id
45 schema:value pub.1038751357
46 rdf:type schema:PropertyValue
47 N19eed00174d0445da8fc7f6573a7303e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N2397657500ee462f96f46c6f971ea6dc schema:volumeNumber 19
50 rdf:type schema:PublicationVolume
51 N45bf72002f4e485fb8d377e6c4832bbe schema:name readcube_id
52 schema:value b8986dbc28c09eafccf25c35aeac211ebdafad6f5505c900c604073f8fad35bf
53 rdf:type schema:PropertyValue
54 N59ec8551d4aa415995c915ba16c2a2f7 rdf:first sg:person.011065637437.99
55 rdf:rest rdf:nil
56 N646a16566ad04b10bd3ab539a893a0ac schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
62 schema:name Statistics
63 rdf:type schema:DefinedTerm
64 sg:journal.1356907 schema:issn 1352-8505
65 1573-3009
66 schema:name Environmental and Ecological Statistics
67 rdf:type schema:Periodical
68 sg:person.011065637437.99 schema:affiliation https://www.grid.ac/institutes/grid.267871.d
69 schema:familyName Frey
70 schema:givenName Jesse
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011065637437.99
72 rdf:type schema:Person
73 sg:pub.10.1007/bf00569358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012567782
74 https://doi.org/10.1007/bf00569358
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s10651-010-0161-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020025152
77 https://doi.org/10.1007/s10651-010-0161-9
78 rdf:type schema:CreativeWork
79 sg:pub.10.1198/1085711032156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006879529
80 https://doi.org/10.1198/1085711032156
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/sim.2158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032210417
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.jspi.2006.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025085088
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.jspi.2010.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016033860
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1071/ar9520385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491920
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/01621459.1994.10476458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304592
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1080/10485250701437232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048488722
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1111/j.0006-341x.2004.00144.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000288773
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1111/j.1541-0420.2007.00900.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038685876
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1198/000313005x54180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197149
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1198/016214506000000410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198511
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/2556166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069991898
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.267871.d schema:alternateName Villanova University
105 schema:name Department of Mathematics and Statistics, Villanova University, 19085, Villanova, PA, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...