A general approach to the analysis of habitat selection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-03

AUTHORS

Thomas Kneib, Felix Knauer, Helmut Küchenhoff

ABSTRACT

The investigation of animal habitat selection aims at the detection of selective usage of habitat types and the identification of covariates influencing their selection. The results not only allow for a better understanding of the habitat selection process but are also intended to help improve the conservation of animals. Usually, habitat selection by larger animals is assessed by radio-tracking or visual observation studies, where the chosen habitat is determined for some animals at a set of specific points in time. Hence the resulting data often have the following structure: a categorical variable indicating the habitat type selected by an animal at a specific point in time is repeatedly observed and will be explained by covariates. These may either describe properties of the habitat types currently available and/or properties of the animal. In this paper, we present a general approach to the analysis of such data in a categorical regression setup. The proposed model generalizes and improves upon several of the approaches previously discussed in the literature. In particular, it accounts for changing habitat availability due to the movement of animals within the observation area. It incorporates both habitat- and animal-specific covariates, and includes individual-specific random effects to account for correlations introduced by the repeated measurements on single animals. Furthermore, the assumption that the effects are linear can be dropped by including the effects in nonparametric manner based on a penalized spline approach. The methodology is implemented in a freely available software package. We demonstrate the general applicability and the potential of the proposed approach in two case studies: The analysis of a songbird community in South-America and a study on brown bears in Central Europe. More... »

PAGES

1-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10651-009-0115-2

DOI

http://dx.doi.org/10.1007/s10651-009-0115-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016115209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carl von Ossietzky University of Oldenburg", 
          "id": "https://www.grid.ac/institutes/grid.5560.6", 
          "name": [
            "Institute of mathematics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knauer", 
        "givenName": "Felix", 
        "id": "sg:person.015104532756.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015104532756.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00fcchenhoff", 
        "givenName": "Helmut", 
        "id": "sg:person.01227642637.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227642637.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2193/0022-541x(2006)70[321:ittsso]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001143727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2005.00392.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006302060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2006)70[404:abredm]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010236832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.1995.9020279.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013944956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-7998.2006.00114.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014483631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2003.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015031877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2006)70[375:dmiwse]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016899099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10651-006-0006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017342544", 
          "https://doi.org/10.1007/s10651-006-0006-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2004)068[0774:uaiolr]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019517594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2004)068[0774:uaiolr]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019517594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1940062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019664876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030637857", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3454-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030637857", 
          "https://doi.org/10.1007/978-1-4757-3454-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3454-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030637857", 
          "https://doi.org/10.1007/978-1-4757-3454-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(1999)080[0566:taodcm]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035581137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00943.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041391033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2002.00700.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041925829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3207(02)00273-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042849954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3207(02)00273-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042849954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10182-007-0033-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043719041", 
          "https://doi.org/10.1007/s10182-007-0033-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10182-007-0033-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043719041", 
          "https://doi.org/10.1007/s10182-007-0033-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2006)70[367:mtporu]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048790589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/1400580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069472709", 
          "https://doi.org/10.2307/1400580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/1400582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069472711", 
          "https://doi.org/10.2307/1400582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1937156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069661156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2265671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069854939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716595", 
          "https://doi.org/10.1007/978-94-009-4109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716595", 
          "https://doi.org/10.1007/978-94-009-4109-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "The investigation of animal habitat selection aims at the detection of selective usage of habitat types and the identification of covariates influencing their selection. The results not only allow for a better understanding of the habitat selection process but are also intended to help improve the conservation of animals. Usually, habitat selection by larger animals is assessed by radio-tracking or visual observation studies, where the chosen habitat is determined for some animals at a set of specific points in time. Hence the resulting data often have the following structure: a categorical variable indicating the habitat type selected by an animal at a specific point in time is repeatedly observed and will be explained by covariates. These may either describe properties of the habitat types currently available and/or properties of the animal. In this paper, we present a general approach to the analysis of such data in a categorical regression setup. The proposed model generalizes and improves upon several of the approaches previously discussed in the literature. In particular, it accounts for changing habitat availability due to the movement of animals within the observation area. It incorporates both habitat- and animal-specific covariates, and includes individual-specific random effects to account for correlations introduced by the repeated measurements on single animals. Furthermore, the assumption that the effects are linear can be dropped by including the effects in nonparametric manner based on a penalized spline approach. The methodology is implemented in a freely available software package. We demonstrate the general applicability and the potential of the proposed approach in two case studies: The analysis of a songbird community in South-America and a study on brown bears in Central Europe.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10651-009-0115-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356907", 
        "issn": [
          "1573-3009", 
          "1352-8505"
        ], 
        "name": "Environmental and Ecological Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "A general approach to the analysis of habitat selection", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4cc8d14bcd6dd08c8f4ef527e9d9d6448f2f47b1691cb033bdb3e37bf0fb54be"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10651-009-0115-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016115209"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10651-009-0115-2", 
      "https://app.dimensions.ai/details/publication/pub.1016115209"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10651-009-0115-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10651-009-0115-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10651-009-0115-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10651-009-0115-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10651-009-0115-2'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10651-009-0115-2 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N0a1da517337a4838acdb0df4e8e242e9
4 schema:citation sg:pub.10.1007/978-1-4757-3454-6
5 sg:pub.10.1007/978-94-009-4109-0
6 sg:pub.10.1007/s10182-007-0033-2
7 sg:pub.10.1007/s10651-006-0006-8
8 sg:pub.10.2307/1400580
9 sg:pub.10.2307/1400582
10 https://app.dimensions.ai/details/publication/pub.1030637857
11 https://doi.org/10.1016/j.biocon.2003.07.017
12 https://doi.org/10.1016/s0006-3207(02)00273-2
13 https://doi.org/10.1046/j.1365-2664.2002.00700.x
14 https://doi.org/10.1046/j.1523-1739.1995.9020279.x
15 https://doi.org/10.1111/j.1469-7998.2006.00114.x
16 https://doi.org/10.1111/j.1541-0420.2005.00392.x
17 https://doi.org/10.1111/j.1541-0420.2007.00943.x
18 https://doi.org/10.1214/ss/1038425655
19 https://doi.org/10.1890/0012-9658(1999)080[0566:taodcm]2.0.co;2
20 https://doi.org/10.2193/0022-541x(2004)068[0774:uaiolr]2.0.co;2
21 https://doi.org/10.2193/0022-541x(2006)70[321:ittsso]2.0.co;2
22 https://doi.org/10.2193/0022-541x(2006)70[367:mtporu]2.0.co;2
23 https://doi.org/10.2193/0022-541x(2006)70[375:dmiwse]2.0.co;2
24 https://doi.org/10.2193/0022-541x(2006)70[404:abredm]2.0.co;2
25 https://doi.org/10.2307/1937156
26 https://doi.org/10.2307/1940062
27 https://doi.org/10.2307/2265671
28 schema:datePublished 2011-03
29 schema:datePublishedReg 2011-03-01
30 schema:description The investigation of animal habitat selection aims at the detection of selective usage of habitat types and the identification of covariates influencing their selection. The results not only allow for a better understanding of the habitat selection process but are also intended to help improve the conservation of animals. Usually, habitat selection by larger animals is assessed by radio-tracking or visual observation studies, where the chosen habitat is determined for some animals at a set of specific points in time. Hence the resulting data often have the following structure: a categorical variable indicating the habitat type selected by an animal at a specific point in time is repeatedly observed and will be explained by covariates. These may either describe properties of the habitat types currently available and/or properties of the animal. In this paper, we present a general approach to the analysis of such data in a categorical regression setup. The proposed model generalizes and improves upon several of the approaches previously discussed in the literature. In particular, it accounts for changing habitat availability due to the movement of animals within the observation area. It incorporates both habitat- and animal-specific covariates, and includes individual-specific random effects to account for correlations introduced by the repeated measurements on single animals. Furthermore, the assumption that the effects are linear can be dropped by including the effects in nonparametric manner based on a penalized spline approach. The methodology is implemented in a freely available software package. We demonstrate the general applicability and the potential of the proposed approach in two case studies: The analysis of a songbird community in South-America and a study on brown bears in Central Europe.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N1d6e368781074484960b9cf062a9775e
35 N1e2e15b0c179467fa4a8638ba8ed79a0
36 sg:journal.1356907
37 schema:name A general approach to the analysis of habitat selection
38 schema:pagination 1-25
39 schema:productId N75a889b14e984d5b92e2b818494e01b1
40 Nc482904b55d54b0d8567a86d7a5f117d
41 Ne7f6027fe41541af8133c2330a47dde5
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016115209
43 https://doi.org/10.1007/s10651-009-0115-2
44 schema:sdDatePublished 2019-04-10T13:29
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N769942beac0e46058687a12e12e1ae7f
47 schema:url http://link.springer.com/10.1007%2Fs10651-009-0115-2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0a1da517337a4838acdb0df4e8e242e9 rdf:first sg:person.01272020411.15
52 rdf:rest N331e6aae12324321a92f4ea28166f5d7
53 N1d6e368781074484960b9cf062a9775e schema:volumeNumber 18
54 rdf:type schema:PublicationVolume
55 N1e2e15b0c179467fa4a8638ba8ed79a0 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N331e6aae12324321a92f4ea28166f5d7 rdf:first sg:person.015104532756.19
58 rdf:rest N9b43c285914f48cb9691e2329f1befb5
59 N75a889b14e984d5b92e2b818494e01b1 schema:name dimensions_id
60 schema:value pub.1016115209
61 rdf:type schema:PropertyValue
62 N769942beac0e46058687a12e12e1ae7f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N9b43c285914f48cb9691e2329f1befb5 rdf:first sg:person.01227642637.82
65 rdf:rest rdf:nil
66 Nc482904b55d54b0d8567a86d7a5f117d schema:name doi
67 schema:value 10.1007/s10651-009-0115-2
68 rdf:type schema:PropertyValue
69 Ne7f6027fe41541af8133c2330a47dde5 schema:name readcube_id
70 schema:value 4cc8d14bcd6dd08c8f4ef527e9d9d6448f2f47b1691cb033bdb3e37bf0fb54be
71 rdf:type schema:PropertyValue
72 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
73 schema:name Biological Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
76 schema:name Ecology
77 rdf:type schema:DefinedTerm
78 sg:journal.1356907 schema:issn 1352-8505
79 1573-3009
80 schema:name Environmental and Ecological Statistics
81 rdf:type schema:Periodical
82 sg:person.01227642637.82 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
83 schema:familyName Küchenhoff
84 schema:givenName Helmut
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227642637.82
86 rdf:type schema:Person
87 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.5560.6
88 schema:familyName Kneib
89 schema:givenName Thomas
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
91 rdf:type schema:Person
92 sg:person.015104532756.19 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
93 schema:familyName Knauer
94 schema:givenName Felix
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015104532756.19
96 rdf:type schema:Person
97 sg:pub.10.1007/978-1-4757-3454-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030637857
98 https://doi.org/10.1007/978-1-4757-3454-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-94-009-4109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716595
101 https://doi.org/10.1007/978-94-009-4109-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10182-007-0033-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043719041
104 https://doi.org/10.1007/s10182-007-0033-2
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10651-006-0006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017342544
107 https://doi.org/10.1007/s10651-006-0006-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.2307/1400580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069472709
110 https://doi.org/10.2307/1400580
111 rdf:type schema:CreativeWork
112 sg:pub.10.2307/1400582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069472711
113 https://doi.org/10.2307/1400582
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1030637857 schema:CreativeWork
116 https://doi.org/10.1016/j.biocon.2003.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015031877
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0006-3207(02)00273-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042849954
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1046/j.1365-2664.2002.00700.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041925829
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1046/j.1523-1739.1995.9020279.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013944956
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1111/j.1469-7998.2006.00114.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014483631
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1111/j.1541-0420.2005.00392.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006302060
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1111/j.1541-0420.2007.00943.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041391033
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1890/0012-9658(1999)080[0566:taodcm]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035581137
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2193/0022-541x(2004)068[0774:uaiolr]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019517594
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2193/0022-541x(2006)70[321:ittsso]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001143727
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2193/0022-541x(2006)70[367:mtporu]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048790589
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2193/0022-541x(2006)70[375:dmiwse]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016899099
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2193/0022-541x(2006)70[404:abredm]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010236832
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2307/1937156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069661156
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2307/1940062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019664876
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/2265671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069854939
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
151 schema:name Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.5560.6 schema:alternateName Carl von Ossietzky University of Oldenburg
154 schema:name Institute of mathematics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
157 schema:name Department of Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...