Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-05

AUTHORS

Jaqueline Matos Cruz, Nádia Aline Corroqué, Renato Nallin Montagnoli, Paulo Renato Matos Lopes, Maria Aparecida Marin Morales, Ederio Dino Bidoia

ABSTRACT

The worldwide spillage of fossil fuels causes an ever-increasing environmental concern due to their resistance to biodegradation and toxicity. The diesel fuel is one of the derivative forms of petroleum that is widely used in the world. Its composition has many aromatic compounds and long hydrocarbons chains, both persistent and hazardous, thus requiring complex microbial dynamics to achieve full biodegradation. At this point, biodiesel has advantages because it is produced from renewable sources. It also has a relatively fast biodegradation. Biodiesel formulation chemically varies according to the raw material used for its production. While vegetable oils tend to have homogeneous proportions of linoleic and oleic fatty acids, animal fats have an heterogeneous distribution of stearic, palmitic and oleic fatty acids. As some studies have already detected the toxic potential of biodiesel from vegetable oil, this study sought information on the phytotoxic and genotoxic potential of animal fat-based biodiesel and compare it with fossil fuel as diesel fuel and crude petroleum. The impacts on the microbial activity of soils contaminated with biodiesel, diesel fuel and crude petroleum were performed by the dehydrogenase activity. Phytotoxicity tests were performed with Eruca sativa seeds and genotoxicity bioassays with Allium cepa seeds. The results showed a rapid assimilation of biodiesel by the autochthonous soil microorganisms. Soil contaminated with either diesel or crude petroleum inhibited the root and hypocotyl elongation of E. sativa. Overall, petroleum contaminated soils showed higher genotoxic potential. Biodiesel from animal fat was rapidly assimilated by soil microorganisms and did not present significant phytotoxic or genotoxic potential, but significantly reduced the mitotic index of A. cepa roots. Our results showed that biodiesel from animal fat have rapid biodegradability. Biodiesel also led to less impacts during seed development and lower genotoxic potential when compared to crude petroleum and diesel fuel. In addition, biodiesel from animal fat does not present the same toxicity demonstrated by biodiesel from soybean-based biodiesel described in current literature. More... »

References to SciGraph publications

Journal

TITLE

Ecotoxicology

ISSUE

N/A

VOLUME

N/A

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10646-019-02037-x

    DOI

    http://dx.doi.org/10.1007/s10646-019-02037-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113261849

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30953255


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sao Paulo State University", 
              "id": "https://www.grid.ac/institutes/grid.410543.7", 
              "name": [
                "Department of Biochemistry and Microbiology, S\u00e3o Paulo State University (UNESP) Institute of Biosciences, Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cruz", 
            "givenName": "Jaqueline Matos", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sao Paulo State University", 
              "id": "https://www.grid.ac/institutes/grid.410543.7", 
              "name": [
                "Institute of Biosciences, S\u00e3o Paulo State University (UNESP), Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Corroqu\u00e9", 
            "givenName": "N\u00e1dia Aline", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Carlos", 
              "id": "https://www.grid.ac/institutes/grid.411247.5", 
              "name": [
                "Federal University of S\u00e3o Carlos, Rod. Anhanguera km 174-SP-330, Araras, SP, 13600-970, Brazil."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montagnoli", 
            "givenName": "Renato Nallin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sao Paulo State University", 
              "id": "https://www.grid.ac/institutes/grid.410543.7", 
              "name": [
                "College of Agricultural and Technological Sciences, S\u00e3o Paulo State University (UNESP), Rodovia Comandante Jo\u00e3o Ribeiro de Barros, km 651, Dracena, SP, Brazil."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopes", 
            "givenName": "Paulo Renato Matos", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sao Paulo State University", 
              "id": "https://www.grid.ac/institutes/grid.410543.7", 
              "name": [
                "Institute of Biosciences, S\u00e3o Paulo State University (UNESP), Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morales", 
            "givenName": "Maria Aparecida Marin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sao Paulo State University", 
              "id": "https://www.grid.ac/institutes/grid.410543.7", 
              "name": [
                "Department of Biochemistry and Microbiology, S\u00e3o Paulo State University (UNESP) Institute of Biosciences, Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil. ederio@rc.unesp.br."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bidoia", 
            "givenName": "Ederio Dino", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.chemphyslip.2011.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003533472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-009-9204-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005864482", 
              "https://doi.org/10.1007/s11627-009-9204-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-009-9204-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005864482", 
              "https://doi.org/10.1007/s11627-009-9204-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ibiod.2014.01.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006397786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoenv.2009.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007645342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2011.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010421743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1110(82)90046-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011813260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1110(82)90046-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011813260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0027-5107(00)00003-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012797141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1517-83822012000400042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017514093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00128-012-0707-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021334671", 
              "https://doi.org/10.1007/s00128-012-0707-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-012-2766-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022163007", 
              "https://doi.org/10.1007/s10661-012-2766-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-015-5938-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022923542", 
              "https://doi.org/10.1007/s11356-015-5938-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuproc.2009.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023182914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0269-7491(02)00119-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023431145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/tox.10032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023977875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00128-011-0430-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024072814", 
              "https://doi.org/10.1007/s00128-011-0430-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aquatox.2008.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026616515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scitotenv.2007.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027402329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ibiod.2016.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029492155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoenv.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031009756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2011.06.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037148584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/em.1048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040059260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2012.06.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041445784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pestbp.2006.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041605803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rser.2014.03.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044483475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2016.11.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046291169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mrfmmm.2004.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047144512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1508/cytologia.66.235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050789524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11270-014-1962-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051373548", 
              "https://doi.org/10.1007/s11270-014-1962-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/qjegh2016-130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086048705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ibiod.2017.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091902134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-017-0678-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093056535", 
              "https://doi.org/10.1007/s11356-017-0678-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-05", 
        "datePublishedReg": "2019-04-05", 
        "description": "The worldwide spillage of fossil fuels causes an ever-increasing environmental concern due to their resistance to biodegradation and toxicity. The diesel fuel is one of the derivative forms of petroleum that is widely used in the world. Its composition has many aromatic compounds and long hydrocarbons chains, both persistent and hazardous, thus requiring complex microbial dynamics to achieve full biodegradation. At this point, biodiesel has advantages because it is produced from renewable sources. It also has a relatively fast biodegradation. Biodiesel formulation chemically varies according to the raw material used for its production. While vegetable oils tend to have homogeneous proportions of linoleic and oleic fatty acids, animal fats have an heterogeneous distribution of stearic, palmitic and oleic fatty acids. As some studies have already detected the toxic potential of biodiesel from vegetable oil, this study sought information on the phytotoxic and genotoxic potential of animal fat-based biodiesel and compare it with fossil fuel as diesel fuel and crude petroleum. The impacts on the microbial activity of soils contaminated with biodiesel, diesel fuel and crude petroleum were performed by the dehydrogenase activity. Phytotoxicity tests were performed with Eruca sativa seeds and genotoxicity bioassays with Allium cepa seeds. The results showed a rapid assimilation of biodiesel by the autochthonous soil microorganisms. Soil contaminated with either diesel or crude petroleum inhibited the root and hypocotyl elongation of E. sativa. Overall, petroleum contaminated soils showed higher genotoxic potential. Biodiesel from animal fat was rapidly assimilated by soil microorganisms and did not present significant phytotoxic or genotoxic potential, but significantly reduced the mitotic index of A. cepa roots. Our results showed that biodiesel from animal fat have rapid biodegradability. Biodiesel also led to less impacts during seed development and lower genotoxic potential when compared to crude petroleum and diesel fuel. In addition, biodiesel from animal fat does not present the same toxicity demonstrated by biodiesel from soybean-based biodiesel described in current literature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10646-019-02037-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4565259", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1129600", 
            "issn": [
              "0963-9292", 
              "1573-3017"
            ], 
            "name": "Ecotoxicology", 
            "type": "Periodical"
          }
        ], 
        "name": "Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum.", 
        "productId": [
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30953255"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9885956"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10646-019-02037-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113261849"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10646-019-02037-x", 
          "https://app.dimensions.ai/details/publication/pub.1113261849"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117091_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10646-019-02037-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10646-019-02037-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10646-019-02037-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10646-019-02037-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10646-019-02037-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      20 PREDICATES      55 URIs      16 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10646-019-02037-x schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N5418d3c741894028bf12a44d1fe29da5
    4 schema:citation sg:pub.10.1007/s00128-011-0430-9
    5 sg:pub.10.1007/s00128-012-0707-7
    6 sg:pub.10.1007/s10661-012-2766-y
    7 sg:pub.10.1007/s11270-014-1962-5
    8 sg:pub.10.1007/s11356-015-5938-9
    9 sg:pub.10.1007/s11356-017-0678-7
    10 sg:pub.10.1007/s11627-009-9204-z
    11 https://doi.org/10.1002/em.1048
    12 https://doi.org/10.1002/tox.10032
    13 https://doi.org/10.1016/0165-1110(82)90046-x
    14 https://doi.org/10.1016/j.aquatox.2008.04.012
    15 https://doi.org/10.1016/j.chemosphere.2011.06.056
    16 https://doi.org/10.1016/j.chemosphere.2011.10.017
    17 https://doi.org/10.1016/j.chemosphere.2012.06.038
    18 https://doi.org/10.1016/j.chemosphere.2016.11.165
    19 https://doi.org/10.1016/j.chemphyslip.2011.06.005
    20 https://doi.org/10.1016/j.ecoenv.2009.01.009
    21 https://doi.org/10.1016/j.ecoenv.2015.08.003
    22 https://doi.org/10.1016/j.fuproc.2009.01.001
    23 https://doi.org/10.1016/j.ibiod.2014.01.026
    24 https://doi.org/10.1016/j.ibiod.2016.05.005
    25 https://doi.org/10.1016/j.ibiod.2017.09.010
    26 https://doi.org/10.1016/j.mrfmmm.2004.03.004
    27 https://doi.org/10.1016/j.pestbp.2006.12.003
    28 https://doi.org/10.1016/j.rser.2014.03.046
    29 https://doi.org/10.1016/j.scitotenv.2007.04.005
    30 https://doi.org/10.1016/s0027-5107(00)00003-8
    31 https://doi.org/10.1016/s0269-7491(02)00119-7
    32 https://doi.org/10.1144/qjegh2016-130
    33 https://doi.org/10.1508/cytologia.66.235
    34 https://doi.org/10.1590/s1517-83822012000400042
    35 schema:datePublished 2019-04-05
    36 schema:datePublishedReg 2019-04-05
    37 schema:description The worldwide spillage of fossil fuels causes an ever-increasing environmental concern due to their resistance to biodegradation and toxicity. The diesel fuel is one of the derivative forms of petroleum that is widely used in the world. Its composition has many aromatic compounds and long hydrocarbons chains, both persistent and hazardous, thus requiring complex microbial dynamics to achieve full biodegradation. At this point, biodiesel has advantages because it is produced from renewable sources. It also has a relatively fast biodegradation. Biodiesel formulation chemically varies according to the raw material used for its production. While vegetable oils tend to have homogeneous proportions of linoleic and oleic fatty acids, animal fats have an heterogeneous distribution of stearic, palmitic and oleic fatty acids. As some studies have already detected the toxic potential of biodiesel from vegetable oil, this study sought information on the phytotoxic and genotoxic potential of animal fat-based biodiesel and compare it with fossil fuel as diesel fuel and crude petroleum. The impacts on the microbial activity of soils contaminated with biodiesel, diesel fuel and crude petroleum were performed by the dehydrogenase activity. Phytotoxicity tests were performed with Eruca sativa seeds and genotoxicity bioassays with Allium cepa seeds. The results showed a rapid assimilation of biodiesel by the autochthonous soil microorganisms. Soil contaminated with either diesel or crude petroleum inhibited the root and hypocotyl elongation of E. sativa. Overall, petroleum contaminated soils showed higher genotoxic potential. Biodiesel from animal fat was rapidly assimilated by soil microorganisms and did not present significant phytotoxic or genotoxic potential, but significantly reduced the mitotic index of A. cepa roots. Our results showed that biodiesel from animal fat have rapid biodegradability. Biodiesel also led to less impacts during seed development and lower genotoxic potential when compared to crude petroleum and diesel fuel. In addition, biodiesel from animal fat does not present the same toxicity demonstrated by biodiesel from soybean-based biodiesel described in current literature.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf sg:journal.1129600
    42 schema:name Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum.
    43 schema:productId N179e747f2ab24733a76f5c400e0ed63f
    44 Nc258f157b6274d5194a5ae975ab231fe
    45 Ncce77993eb7a40ca9d049efe7aa0f0da
    46 Ne3ad285d0a0242778b1eabc13c59f565
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261849
    48 https://doi.org/10.1007/s10646-019-02037-x
    49 schema:sdDatePublished 2019-04-11T14:17
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Naac9587e50b34c609a01175beb3351a0
    52 schema:url http://link.springer.com/10.1007/s10646-019-02037-x
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0a360d4395b64d34b83d1d1deb5d9ece schema:affiliation https://www.grid.ac/institutes/grid.410543.7
    57 schema:familyName Bidoia
    58 schema:givenName Ederio Dino
    59 rdf:type schema:Person
    60 N10c603411d45408f9b161dd6791c0f15 rdf:first Nf4f4ca05387a41aa8bc9062cd060ab01
    61 rdf:rest N187661e4701d40f4b081f5e5fdbb4ee1
    62 N179e747f2ab24733a76f5c400e0ed63f schema:name pubmed_id
    63 schema:value 30953255
    64 rdf:type schema:PropertyValue
    65 N187661e4701d40f4b081f5e5fdbb4ee1 rdf:first N4da29fdfdbac411090a876a360141828
    66 rdf:rest N8b8e698cba084d158230f1d7d9cf54d8
    67 N299cdf8faf0740f2915a23ef32d3e7d2 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
    68 schema:familyName Cruz
    69 schema:givenName Jaqueline Matos
    70 rdf:type schema:Person
    71 N4da29fdfdbac411090a876a360141828 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
    72 schema:familyName Montagnoli
    73 schema:givenName Renato Nallin
    74 rdf:type schema:Person
    75 N5418d3c741894028bf12a44d1fe29da5 rdf:first N299cdf8faf0740f2915a23ef32d3e7d2
    76 rdf:rest N10c603411d45408f9b161dd6791c0f15
    77 N6c67bca8b6f34aadbf481e8d6fd4b43a rdf:first N6c88eb19954d408cbc4edd077ab037fd
    78 rdf:rest Nbebf2d9066054f48bce87ba3b75284c6
    79 N6c88eb19954d408cbc4edd077ab037fd schema:affiliation https://www.grid.ac/institutes/grid.410543.7
    80 schema:familyName Morales
    81 schema:givenName Maria Aparecida Marin
    82 rdf:type schema:Person
    83 N8b8e698cba084d158230f1d7d9cf54d8 rdf:first Nec9ed9d3666947c1bdd926a340979579
    84 rdf:rest N6c67bca8b6f34aadbf481e8d6fd4b43a
    85 Naac9587e50b34c609a01175beb3351a0 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Nbebf2d9066054f48bce87ba3b75284c6 rdf:first N0a360d4395b64d34b83d1d1deb5d9ece
    88 rdf:rest rdf:nil
    89 Nc258f157b6274d5194a5ae975ab231fe schema:name nlm_unique_id
    90 schema:value 9885956
    91 rdf:type schema:PropertyValue
    92 Ncce77993eb7a40ca9d049efe7aa0f0da schema:name doi
    93 schema:value 10.1007/s10646-019-02037-x
    94 rdf:type schema:PropertyValue
    95 Ne3ad285d0a0242778b1eabc13c59f565 schema:name dimensions_id
    96 schema:value pub.1113261849
    97 rdf:type schema:PropertyValue
    98 Nec9ed9d3666947c1bdd926a340979579 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
    99 schema:familyName Lopes
    100 schema:givenName Paulo Renato Matos
    101 rdf:type schema:Person
    102 Nf4f4ca05387a41aa8bc9062cd060ab01 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
    103 schema:familyName Corroqué
    104 schema:givenName Nádia Aline
    105 rdf:type schema:Person
    106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Biological Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Microbiology
    111 rdf:type schema:DefinedTerm
    112 sg:grant.4565259 http://pending.schema.org/fundedItem sg:pub.10.1007/s10646-019-02037-x
    113 rdf:type schema:MonetaryGrant
    114 sg:journal.1129600 schema:issn 0963-9292
    115 1573-3017
    116 schema:name Ecotoxicology
    117 rdf:type schema:Periodical
    118 sg:pub.10.1007/s00128-011-0430-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024072814
    119 https://doi.org/10.1007/s00128-011-0430-9
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00128-012-0707-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021334671
    122 https://doi.org/10.1007/s00128-012-0707-7
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s10661-012-2766-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022163007
    125 https://doi.org/10.1007/s10661-012-2766-y
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s11270-014-1962-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051373548
    128 https://doi.org/10.1007/s11270-014-1962-5
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s11356-015-5938-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022923542
    131 https://doi.org/10.1007/s11356-015-5938-9
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s11356-017-0678-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093056535
    134 https://doi.org/10.1007/s11356-017-0678-7
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s11627-009-9204-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005864482
    137 https://doi.org/10.1007/s11627-009-9204-z
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1002/em.1048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040059260
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1002/tox.10032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023977875
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/0165-1110(82)90046-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011813260
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.aquatox.2008.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026616515
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.chemosphere.2011.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037148584
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.chemosphere.2011.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010421743
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.chemosphere.2012.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445784
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.chemosphere.2016.11.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046291169
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.chemphyslip.2011.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003533472
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.ecoenv.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007645342
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.ecoenv.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031009756
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.fuproc.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023182914
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ibiod.2014.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006397786
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.ibiod.2016.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029492155
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.ibiod.2017.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091902134
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.mrfmmm.2004.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047144512
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.pestbp.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041605803
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.rser.2014.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044483475
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.scitotenv.2007.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027402329
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0027-5107(00)00003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012797141
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0269-7491(02)00119-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023431145
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1144/qjegh2016-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086048705
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1508/cytologia.66.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050789524
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1590/s1517-83822012000400042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017514093
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
    188 schema:name College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Rodovia Comandante João Ribeiro de Barros, km 651, Dracena, SP, Brazil.
    189 Department of Biochemistry and Microbiology, São Paulo State University (UNESP) Institute of Biosciences, Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil.
    190 Department of Biochemistry and Microbiology, São Paulo State University (UNESP) Institute of Biosciences, Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil. ederio@rc.unesp.br.
    191 Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil.
    192 rdf:type schema:Organization
    193 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
    194 schema:name Federal University of São Carlos, Rod. Anhanguera km 174-SP-330, Araras, SP, 13600-970, Brazil.
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...