Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-06-19

AUTHORS

Mascha N. Rubach, Donald J. Baird, Marie-Claire Boerwinkel, Stephen J. Maund, Ivo Roessink, Paul J. Van den Brink

ABSTRACT

Ecological risk assessment (ERA) has followed a taxonomy-based approach, making the assumption that related species will show similar sensitivity to toxicants, and using safety factors or species sensitivity distributions to extrapolate from tested to untested species. In ecology it has become apparent that taxonomic approaches may have limitations for the description and understanding of species assemblages in nature. Therefore it has been proposed that the inclusion of species traits in ERA could provide a useful and alternative description of the systems under investigation. At the same time, there is a growing recognition that the use of mechanistic approaches in ERA, including conceptual and quantitative models, may improve predictive and extrapolative power. Purposefully linking traits with mechanistic effect models could add value to taxonomy-based ERA by improving our understanding of how structural and functional system facets may facilitate inter-species extrapolation. Here, we explore whether and in what ways traits can be linked purposefully to mechanistic effect models to predict intrinsic sensitivity using available data on the acute sensitivity and toxicokinetics of a range of freshwater arthropods exposed to chlorpyrifos. The results of a quantitative linking of seven different endpoints and twelve traits demonstrate that while quantitative links between traits and/or trait combinations and process based (toxicokinetic) model parameters can be established, the use of simple traits to predict classical sensitivity endpoints yields little insight. Remarkably, neither of the standard sensitivity values, i.e. the LC50 or EC50, showed a strong correlation with traits. Future research in this area should include a quantitative linking of toxicodynamic parameter estimations and physiological traits, and requires further consideration of how mechanistic trait-process/parameter links can be used for prediction of intrinsic sensitivity across species for different substances in ERA. More... »

PAGES

2088-2101

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10646-012-0962-8

DOI

http://dx.doi.org/10.1007/s10646-012-0962-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034014055

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22711550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aquatic Organisms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorpyrifos", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insecticides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Invertebrates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lethal Dose 50", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Syngenta Crop Protection AG, 4002, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.420222.4", 
          "name": [
            "Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands", 
            "Syngenta Crop Protection AG, 4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubach", 
        "givenName": "Mascha N.", 
        "id": "sg:person.01262530314.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262530314.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environment Canada@Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.266820.8", 
          "name": [
            "Environment Canada@Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baird", 
        "givenName": "Donald J.", 
        "id": "sg:person.01327330113.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327330113.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boerwinkel", 
        "givenName": "Marie-Claire", 
        "id": "sg:person.0775366663.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775366663.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Syngenta Crop Protection AG, 4002, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.420222.4", 
          "name": [
            "Syngenta Crop Protection AG, 4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maund", 
        "givenName": "Stephen J.", 
        "id": "sg:person.07574764234.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07574764234.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roessink", 
        "givenName": "Ivo", 
        "id": "sg:person.0760747437.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760747437.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands", 
            "Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van den Brink", 
        "givenName": "Paul J.", 
        "id": "sg:person.01274157063.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274157063.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00244-010-9582-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024095643", 
          "https://doi.org/10.1007/s00244-010-9582-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06-19", 
    "datePublishedReg": "2012-06-19", 
    "description": "Ecological risk assessment (ERA) has followed a taxonomy-based approach, making the assumption that related species will show similar sensitivity to toxicants, and using safety factors or species sensitivity distributions to extrapolate from tested to untested species. In ecology it has become apparent that taxonomic approaches may have limitations for the description and understanding of species assemblages in nature. Therefore it has been proposed that the inclusion of species traits in ERA could provide a useful and alternative description of the systems under investigation. At the same time, there is a growing recognition that the use of mechanistic approaches in ERA, including conceptual and quantitative models, may improve predictive and extrapolative power. Purposefully linking traits with mechanistic effect models could add value to taxonomy-based ERA by improving our understanding of how structural and functional system facets may facilitate inter-species extrapolation. Here, we explore whether and in what ways traits can be linked purposefully to mechanistic effect models to predict intrinsic sensitivity using available data on the acute sensitivity and toxicokinetics of a range of freshwater arthropods exposed to chlorpyrifos. The results of a quantitative linking of seven different endpoints and twelve traits demonstrate that while quantitative links between traits and/or trait combinations and process based (toxicokinetic) model parameters can be established, the use of simple traits to predict classical sensitivity endpoints yields little insight. Remarkably, neither of the standard sensitivity values, i.e. the LC50 or EC50, showed a strong correlation with traits. Future research in this area should include a quantitative linking of toxicodynamic parameter estimations and physiological traits, and requires further consideration of how mechanistic trait-process/parameter links can be used for prediction of intrinsic sensitivity across species for different substances in ERA.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10646-012-0962-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129600", 
        "issn": [
          "0963-9292", 
          "1573-3017"
        ], 
        "name": "Ecotoxicology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "species traits", 
      "ecological risk assessment", 
      "mechanistic effect models", 
      "freshwater arthropods", 
      "taxonomy-based approach", 
      "simple traits", 
      "species assemblages", 
      "physiological traits", 
      "taxonomic approach", 
      "aquatic invertebrates", 
      "quantitative linking", 
      "untested species", 
      "sensitivity endpoints", 
      "way traits", 
      "traits", 
      "species", 
      "inter-species extrapolation", 
      "intrinsic sensitivity", 
      "acute sensitivity", 
      "sensitivity distribution", 
      "mechanistic approach", 
      "invertebrates", 
      "arthropods", 
      "ecology", 
      "different endpoints", 
      "assemblages", 
      "little insight", 
      "insecticides", 
      "extrapolative power", 
      "quantitative link", 
      "toxicants", 
      "understanding", 
      "LC50", 
      "similar sensitivity", 
      "quantitative model", 
      "insights", 
      "link", 
      "EC50", 
      "available data", 
      "sensitivity", 
      "strong correlation", 
      "risk assessment", 
      "factors", 
      "description", 
      "distribution", 
      "different substances", 
      "system facets", 
      "recognition", 
      "combination", 
      "process", 
      "approach", 
      "substances", 
      "toxicokinetics", 
      "future research", 
      "further consideration", 
      "linking", 
      "data", 
      "range", 
      "area", 
      "nature", 
      "model", 
      "use", 
      "results", 
      "limitations", 
      "same time", 
      "prediction", 
      "correlation", 
      "investigation", 
      "system", 
      "endpoint", 
      "facets", 
      "time", 
      "research", 
      "extrapolation", 
      "values", 
      "inclusion", 
      "effects model", 
      "assessment", 
      "parameters", 
      "assumption", 
      "consideration", 
      "predictors", 
      "model parameters", 
      "alternative description", 
      "estimation", 
      "power", 
      "safety factor", 
      "parameter estimation", 
      "sensitivity values"
    ], 
    "name": "Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos", 
    "pagination": "2088-2101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034014055"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10646-012-0962-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22711550"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10646-012-0962-8", 
      "https://app.dimensions.ai/details/publication/pub.1034014055"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_554.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10646-012-0962-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10646-012-0962-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10646-012-0962-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10646-012-0962-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10646-012-0962-8'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      124 URIs      115 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10646-012-0962-8 schema:about N06df19a9b0dd4352ad7fba09b662223d
2 N2fb58f3d9ea94573aacd7fe6f4232e72
3 N32efa4c0042d4bf180fa3aa101511867
4 N383d975ec1e94d55a24f4ac1e80a6b8d
5 N3ce3498a4f0549868e579e180f7dd914
6 N45055bd59eb24547b391e248f2a3c6dc
7 N465569930987478b9caf587760797b60
8 Na31566d7337a4d889df9a905f6165987
9 Ne7d0577cf07948a6a1729e04767348c1
10 anzsrc-for:06
11 anzsrc-for:0602
12 schema:author N3a317f578a6f464d9aaee20793883655
13 schema:citation sg:pub.10.1007/s00244-010-9582-6
14 schema:datePublished 2012-06-19
15 schema:datePublishedReg 2012-06-19
16 schema:description Ecological risk assessment (ERA) has followed a taxonomy-based approach, making the assumption that related species will show similar sensitivity to toxicants, and using safety factors or species sensitivity distributions to extrapolate from tested to untested species. In ecology it has become apparent that taxonomic approaches may have limitations for the description and understanding of species assemblages in nature. Therefore it has been proposed that the inclusion of species traits in ERA could provide a useful and alternative description of the systems under investigation. At the same time, there is a growing recognition that the use of mechanistic approaches in ERA, including conceptual and quantitative models, may improve predictive and extrapolative power. Purposefully linking traits with mechanistic effect models could add value to taxonomy-based ERA by improving our understanding of how structural and functional system facets may facilitate inter-species extrapolation. Here, we explore whether and in what ways traits can be linked purposefully to mechanistic effect models to predict intrinsic sensitivity using available data on the acute sensitivity and toxicokinetics of a range of freshwater arthropods exposed to chlorpyrifos. The results of a quantitative linking of seven different endpoints and twelve traits demonstrate that while quantitative links between traits and/or trait combinations and process based (toxicokinetic) model parameters can be established, the use of simple traits to predict classical sensitivity endpoints yields little insight. Remarkably, neither of the standard sensitivity values, i.e. the LC50 or EC50, showed a strong correlation with traits. Future research in this area should include a quantitative linking of toxicodynamic parameter estimations and physiological traits, and requires further consideration of how mechanistic trait-process/parameter links can be used for prediction of intrinsic sensitivity across species for different substances in ERA.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf Na79de9bc8cdc49d9a61c0a818b8212b8
20 Nb4030318b3c94b8e830940326fb78457
21 sg:journal.1129600
22 schema:keywords EC50
23 LC50
24 acute sensitivity
25 alternative description
26 approach
27 aquatic invertebrates
28 area
29 arthropods
30 assemblages
31 assessment
32 assumption
33 available data
34 combination
35 consideration
36 correlation
37 data
38 description
39 different endpoints
40 different substances
41 distribution
42 ecological risk assessment
43 ecology
44 effects model
45 endpoint
46 estimation
47 extrapolation
48 extrapolative power
49 facets
50 factors
51 freshwater arthropods
52 further consideration
53 future research
54 inclusion
55 insecticides
56 insights
57 inter-species extrapolation
58 intrinsic sensitivity
59 invertebrates
60 investigation
61 limitations
62 link
63 linking
64 little insight
65 mechanistic approach
66 mechanistic effect models
67 model
68 model parameters
69 nature
70 parameter estimation
71 parameters
72 physiological traits
73 power
74 prediction
75 predictors
76 process
77 quantitative link
78 quantitative linking
79 quantitative model
80 range
81 recognition
82 research
83 results
84 risk assessment
85 safety factor
86 same time
87 sensitivity
88 sensitivity distribution
89 sensitivity endpoints
90 sensitivity values
91 similar sensitivity
92 simple traits
93 species
94 species assemblages
95 species traits
96 strong correlation
97 substances
98 system
99 system facets
100 taxonomic approach
101 taxonomy-based approach
102 time
103 toxicants
104 toxicokinetics
105 traits
106 understanding
107 untested species
108 use
109 values
110 way traits
111 schema:name Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos
112 schema:pagination 2088-2101
113 schema:productId N0c13f93b46274156be5499d43c8439e9
114 N60aea79523814105a6f877c3d9e82d28
115 Ne212218e0832449e80c8bef29c66f5ab
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034014055
117 https://doi.org/10.1007/s10646-012-0962-8
118 schema:sdDatePublished 2022-12-01T06:29
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Nb0c9785448064d3aad5b27cb5fe69bef
121 schema:url https://doi.org/10.1007/s10646-012-0962-8
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N06df19a9b0dd4352ad7fba09b662223d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Risk Assessment
127 rdf:type schema:DefinedTerm
128 N0c13f93b46274156be5499d43c8439e9 schema:name dimensions_id
129 schema:value pub.1034014055
130 rdf:type schema:PropertyValue
131 N2fb58f3d9ea94573aacd7fe6f4232e72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Insecticides
133 rdf:type schema:DefinedTerm
134 N32efa4c0042d4bf180fa3aa101511867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Aquatic Organisms
136 rdf:type schema:DefinedTerm
137 N383d975ec1e94d55a24f4ac1e80a6b8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Animals
139 rdf:type schema:DefinedTerm
140 N3a317f578a6f464d9aaee20793883655 rdf:first sg:person.01262530314.27
141 rdf:rest N73216a054b42402ab1138613d421cacd
142 N3ce3498a4f0549868e579e180f7dd914 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Lethal Dose 50
144 rdf:type schema:DefinedTerm
145 N45055bd59eb24547b391e248f2a3c6dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Chlorpyrifos
147 rdf:type schema:DefinedTerm
148 N465569930987478b9caf587760797b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Principal Component Analysis
150 rdf:type schema:DefinedTerm
151 N60aea79523814105a6f877c3d9e82d28 schema:name doi
152 schema:value 10.1007/s10646-012-0962-8
153 rdf:type schema:PropertyValue
154 N63c38897b3a346ea9142d706517d426b rdf:first sg:person.07574764234.28
155 rdf:rest N76196d5092524e85b9310f19c127dcfc
156 N6dc963887284400f92533ebc24a04245 rdf:first sg:person.01274157063.29
157 rdf:rest rdf:nil
158 N73216a054b42402ab1138613d421cacd rdf:first sg:person.01327330113.31
159 rdf:rest Ndbbc4daa8757421984ec96d7faf82387
160 N76196d5092524e85b9310f19c127dcfc rdf:first sg:person.0760747437.07
161 rdf:rest N6dc963887284400f92533ebc24a04245
162 Na31566d7337a4d889df9a905f6165987 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Linear Models
164 rdf:type schema:DefinedTerm
165 Na79de9bc8cdc49d9a61c0a818b8212b8 schema:issueNumber 7
166 rdf:type schema:PublicationIssue
167 Nb0c9785448064d3aad5b27cb5fe69bef schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 Nb4030318b3c94b8e830940326fb78457 schema:volumeNumber 21
170 rdf:type schema:PublicationVolume
171 Ndbbc4daa8757421984ec96d7faf82387 rdf:first sg:person.0775366663.64
172 rdf:rest N63c38897b3a346ea9142d706517d426b
173 Ne212218e0832449e80c8bef29c66f5ab schema:name pubmed_id
174 schema:value 22711550
175 rdf:type schema:PropertyValue
176 Ne7d0577cf07948a6a1729e04767348c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Invertebrates
178 rdf:type schema:DefinedTerm
179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
180 schema:name Biological Sciences
181 rdf:type schema:DefinedTerm
182 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
183 schema:name Ecology
184 rdf:type schema:DefinedTerm
185 sg:journal.1129600 schema:issn 0963-9292
186 1573-3017
187 schema:name Ecotoxicology
188 schema:publisher Springer Nature
189 rdf:type schema:Periodical
190 sg:person.01262530314.27 schema:affiliation grid-institutes:grid.420222.4
191 schema:familyName Rubach
192 schema:givenName Mascha N.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262530314.27
194 rdf:type schema:Person
195 sg:person.01274157063.29 schema:affiliation grid-institutes:grid.4818.5
196 schema:familyName Van den Brink
197 schema:givenName Paul J.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274157063.29
199 rdf:type schema:Person
200 sg:person.01327330113.31 schema:affiliation grid-institutes:grid.266820.8
201 schema:familyName Baird
202 schema:givenName Donald J.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327330113.31
204 rdf:type schema:Person
205 sg:person.07574764234.28 schema:affiliation grid-institutes:grid.420222.4
206 schema:familyName Maund
207 schema:givenName Stephen J.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07574764234.28
209 rdf:type schema:Person
210 sg:person.0760747437.07 schema:affiliation grid-institutes:grid.4818.5
211 schema:familyName Roessink
212 schema:givenName Ivo
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760747437.07
214 rdf:type schema:Person
215 sg:person.0775366663.64 schema:affiliation grid-institutes:grid.4818.5
216 schema:familyName Boerwinkel
217 schema:givenName Marie-Claire
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775366663.64
219 rdf:type schema:Person
220 sg:pub.10.1007/s00244-010-9582-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024095643
221 https://doi.org/10.1007/s00244-010-9582-6
222 rdf:type schema:CreativeWork
223 grid-institutes:grid.266820.8 schema:alternateName Environment Canada@Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB, Canada
224 schema:name Environment Canada@Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB, Canada
225 rdf:type schema:Organization
226 grid-institutes:grid.420222.4 schema:alternateName Syngenta Crop Protection AG, 4002, Basel, Switzerland
227 schema:name Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
228 Syngenta Crop Protection AG, 4002, Basel, Switzerland
229 rdf:type schema:Organization
230 grid-institutes:grid.4818.5 schema:alternateName Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
231 schema:name Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
232 Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...