Population-level Assessment of Risks of Pesticides to Birds and Mammals in the UK View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11-22

AUTHORS

R.M. Sibly, H.R. Akçakaya, C.J. Topping, R.J. O’Connor

ABSTRACT

It is generally acknowledged that population-level assessments provide a better measure of response to toxicants than assessments of individual-level effects. Population-level assessments generally require the use of models to integrate potentially complex data about the effects of toxicants on life-history traits, and to provide a relevant measure of ecological impact. Building on excellent earlier reviews we here briefly outline the modelling options in population-level risk assessment. Modelling is used to calculate population endpoints from available data, which is often about individual life histories, the ways that individuals interact with each other, the environment and other species, and the ways individuals are affected by pesticides. As population endpoints, we recommend the use of population abundance, population growth rate, and the chance of population persistence. We recommend two types of model: simple life-history models distinguishing two life-history stages, juveniles and adults; and spatially-explicit individual-based landscape models. Life-history models are very quick to set up and run, and they provide a great deal of insight. At the other extreme, individual-based landscape models provide the greatest verisimilitude, albeit at the cost of greatly increased complexity. We conclude with a discussion of the implications of the severe problems of parameterising models. More... »

PAGES

863-876

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10646-005-0033-5

DOI

http://dx.doi.org/10.1007/s10646-005-0033-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022562091

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16328716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Birds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pesticides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Growth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Animal and Microbial Sciences, University of Reading, Whiteknights, RG6 6AJ, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "School of Animal and Microbial Sciences, University of Reading, Whiteknights, RG6 6AJ, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sibly", 
        "givenName": "R.M.", 
        "id": "sg:person.01055332110.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055332110.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ak\u00e7akaya", 
        "givenName": "H.R.", 
        "id": "sg:person.01227752311.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227752311.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EcoSol, F\u00e5rupvej 54, DK-8410, R\u00f8nde, Denmark", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "EcoSol, F\u00e5rupvej 54, DK-8410, R\u00f8nde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Topping", 
        "givenName": "C.J.", 
        "id": "sg:person.01350232334.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350232334.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Wildlife Ecology, University of Maine, 04469-5755, Orono, ME, USA", 
          "id": "http://www.grid.ac/institutes/grid.21106.34", 
          "name": [
            "Department of Wildlife Ecology, University of Maine, 04469-5755, Orono, ME, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Connor", 
        "givenName": "R.J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:bioc.0000004313.86836.ab", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009756871", 
          "https://doi.org/10.1023/b:bioc.0000004313.86836.ab"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35006050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028734571", 
          "https://doi.org/10.1038/35006050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00776426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029454084", 
          "https://doi.org/10.1007/bf00776426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-005-0035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029580452", 
          "https://doi.org/10.1007/s10646-005-0035-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-4661-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089498465", 
          "https://doi.org/10.1007/978-1-4615-4661-0_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008867602813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010449749", 
          "https://doi.org/10.1023/a:1008867602813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-005-0028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022079322", 
          "https://doi.org/10.1007/s10646-005-0028-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00388066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122066", 
          "https://doi.org/10.1007/bf00388066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36290-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007809575", 
          "https://doi.org/10.1007/3-540-36290-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-005-0027-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012367427", 
          "https://doi.org/10.1007/s10646-005-0027-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-11-22", 
    "datePublishedReg": "2005-11-22", 
    "description": "It is generally acknowledged that population-level assessments provide a better measure of response to toxicants than assessments of individual-level effects. Population-level assessments generally require the use of models to integrate potentially complex data about the effects of toxicants on life-history traits, and to provide a relevant measure of ecological impact. Building on excellent earlier reviews we here briefly outline the modelling options in population-level risk assessment. Modelling is used to calculate population endpoints from available data, which is often about individual life histories, the ways that individuals interact with each other, the environment and other species, and the ways individuals are affected by pesticides. As population endpoints, we recommend the use of population abundance, population growth rate, and the chance of population persistence. We recommend two types of model: simple life-history models distinguishing two life-history stages, juveniles and adults; and spatially-explicit individual-based landscape models. Life-history models are very quick to set up and run, and they provide a great deal of insight. At the other extreme, individual-based landscape models provide the greatest verisimilitude, albeit at the cost of greatly increased complexity. We conclude with a discussion of the implications of the severe problems of parameterising models.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10646-005-0033-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129600", 
        "issn": [
          "0963-9292", 
          "1573-3017"
        ], 
        "name": "Ecotoxicology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "population-level assessment", 
      "landscape model", 
      "population-level risk assessment", 
      "population endpoints", 
      "life-history model", 
      "simple life-history model", 
      "life-history traits", 
      "life-history stages", 
      "population growth rate", 
      "ecological impacts", 
      "population persistence", 
      "effects of toxicants", 
      "population abundance", 
      "greater verisimilitude", 
      "individual-level effects", 
      "use of models", 
      "risk assessment", 
      "life history", 
      "individual life histories", 
      "pesticides", 
      "assessment", 
      "relevant measures", 
      "abundance", 
      "birds", 
      "types of models", 
      "toxicants", 
      "severe problems", 
      "species", 
      "mammals", 
      "persistence", 
      "growth rate", 
      "available data", 
      "juveniles", 
      "impact", 
      "good measure", 
      "traits", 
      "earlier review", 
      "environment", 
      "use", 
      "modelling", 
      "measures", 
      "individuals", 
      "effect", 
      "UK", 
      "data", 
      "types", 
      "model", 
      "options", 
      "implications", 
      "risk", 
      "response", 
      "complexity", 
      "endpoints", 
      "history", 
      "great deal", 
      "rate", 
      "insights", 
      "chance", 
      "complex data", 
      "way individuals", 
      "way", 
      "stage", 
      "cost", 
      "review", 
      "discussion", 
      "deal", 
      "problem", 
      "adults", 
      "verisimilitude", 
      "excellent earlier reviews", 
      "explicit individual-based landscape models", 
      "individual-based landscape models"
    ], 
    "name": "Population-level Assessment of Risks of Pesticides to Birds and Mammals in the UK", 
    "pagination": "863-876", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022562091"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10646-005-0033-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16328716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10646-005-0033-5", 
      "https://app.dimensions.ai/details/publication/pub.1022562091"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_406.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10646-005-0033-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10646-005-0033-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10646-005-0033-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10646-005-0033-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10646-005-0033-5'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      22 PREDICATES      119 URIs      101 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10646-005-0033-5 schema:about N0be55cfbda6c44a0926a4b013e2eded8
2 N3f36c539c0704c2e8c43ac65aeed19ad
3 N5ef894b8528342de92bdd3779efe1386
4 N754e1f3318c240c4b2e246d934647436
5 N8413096438b7488ebfdac2ba38e9cf5e
6 N8b3c925612fd4d6383a26904a92a3a0c
7 Na348962b2b464f2c888e881c951bc6a7
8 Na576eceb678d4c8da293287a725a2636
9 Nd7c992d88e414bc1841ff6d1f01749a6
10 Ne5f42bfb59204dd0993c1213c826ec9a
11 Nf19e31ede20142b7bffa201c4314219b
12 anzsrc-for:06
13 anzsrc-for:0602
14 schema:author Nbd5beab0a2324a4e86e2042c666ec1a0
15 schema:citation sg:pub.10.1007/3-540-36290-8
16 sg:pub.10.1007/978-1-4615-4661-0_25
17 sg:pub.10.1007/bf00388066
18 sg:pub.10.1007/bf00776426
19 sg:pub.10.1007/s10646-005-0027-3
20 sg:pub.10.1007/s10646-005-0028-2
21 sg:pub.10.1007/s10646-005-0035-3
22 sg:pub.10.1023/a:1008867602813
23 sg:pub.10.1023/b:bioc.0000004313.86836.ab
24 sg:pub.10.1038/35006050
25 schema:datePublished 2005-11-22
26 schema:datePublishedReg 2005-11-22
27 schema:description It is generally acknowledged that population-level assessments provide a better measure of response to toxicants than assessments of individual-level effects. Population-level assessments generally require the use of models to integrate potentially complex data about the effects of toxicants on life-history traits, and to provide a relevant measure of ecological impact. Building on excellent earlier reviews we here briefly outline the modelling options in population-level risk assessment. Modelling is used to calculate population endpoints from available data, which is often about individual life histories, the ways that individuals interact with each other, the environment and other species, and the ways individuals are affected by pesticides. As population endpoints, we recommend the use of population abundance, population growth rate, and the chance of population persistence. We recommend two types of model: simple life-history models distinguishing two life-history stages, juveniles and adults; and spatially-explicit individual-based landscape models. Life-history models are very quick to set up and run, and they provide a great deal of insight. At the other extreme, individual-based landscape models provide the greatest verisimilitude, albeit at the cost of greatly increased complexity. We conclude with a discussion of the implications of the severe problems of parameterising models.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nd587bdfae5c84d98aa9c463b63e98121
32 Nd5ad7c0d333e4b6794a42c2c6530e83f
33 sg:journal.1129600
34 schema:keywords UK
35 abundance
36 adults
37 assessment
38 available data
39 birds
40 chance
41 complex data
42 complexity
43 cost
44 data
45 deal
46 discussion
47 earlier review
48 ecological impacts
49 effect
50 effects of toxicants
51 endpoints
52 environment
53 excellent earlier reviews
54 explicit individual-based landscape models
55 good measure
56 great deal
57 greater verisimilitude
58 growth rate
59 history
60 impact
61 implications
62 individual life histories
63 individual-based landscape models
64 individual-level effects
65 individuals
66 insights
67 juveniles
68 landscape model
69 life history
70 life-history model
71 life-history stages
72 life-history traits
73 mammals
74 measures
75 model
76 modelling
77 options
78 persistence
79 pesticides
80 population abundance
81 population endpoints
82 population growth rate
83 population persistence
84 population-level assessment
85 population-level risk assessment
86 problem
87 rate
88 relevant measures
89 response
90 review
91 risk
92 risk assessment
93 severe problems
94 simple life-history model
95 species
96 stage
97 toxicants
98 traits
99 types
100 types of models
101 use
102 use of models
103 verisimilitude
104 way
105 way individuals
106 schema:name Population-level Assessment of Risks of Pesticides to Birds and Mammals in the UK
107 schema:pagination 863-876
108 schema:productId N2bb4c4cd6dc74f339db41fde115b904e
109 N5dd7475306ec4bf7aba7cf08d19d9472
110 Nd5094ed6cec443dd81d890be51f868cb
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022562091
112 https://doi.org/10.1007/s10646-005-0033-5
113 schema:sdDatePublished 2021-12-01T19:16
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N748ddea6daa44ae18ec095777d1f5fe5
116 schema:url https://doi.org/10.1007/s10646-005-0033-5
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N0be55cfbda6c44a0926a4b013e2eded8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Pesticides
122 rdf:type schema:DefinedTerm
123 N270012df4697450297359c197a0f5e5f schema:affiliation grid-institutes:grid.21106.34
124 schema:familyName O’Connor
125 schema:givenName R.J.
126 rdf:type schema:Person
127 N2bb4c4cd6dc74f339db41fde115b904e schema:name pubmed_id
128 schema:value 16328716
129 rdf:type schema:PropertyValue
130 N3f36c539c0704c2e8c43ac65aeed19ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Population Density
132 rdf:type schema:DefinedTerm
133 N47db0dc307874a3ea4d714d63c53d628 rdf:first sg:person.01350232334.20
134 rdf:rest N5364e6d4c9dc4dc98a1ca25fc59eb1ef
135 N5364e6d4c9dc4dc98a1ca25fc59eb1ef rdf:first N270012df4697450297359c197a0f5e5f
136 rdf:rest rdf:nil
137 N5dd7475306ec4bf7aba7cf08d19d9472 schema:name dimensions_id
138 schema:value pub.1022562091
139 rdf:type schema:PropertyValue
140 N5ef894b8528342de92bdd3779efe1386 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Population Growth
142 rdf:type schema:DefinedTerm
143 N748ddea6daa44ae18ec095777d1f5fe5 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N754e1f3318c240c4b2e246d934647436 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Animals
147 rdf:type schema:DefinedTerm
148 N8413096438b7488ebfdac2ba38e9cf5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Environmental Pollutants
150 rdf:type schema:DefinedTerm
151 N8b3c925612fd4d6383a26904a92a3a0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Risk Assessment
153 rdf:type schema:DefinedTerm
154 Na348962b2b464f2c888e881c951bc6a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Models, Theoretical
156 rdf:type schema:DefinedTerm
157 Na576eceb678d4c8da293287a725a2636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Mammals
159 rdf:type schema:DefinedTerm
160 Naab12de7778441b782a6a9a4566954b8 rdf:first sg:person.01227752311.33
161 rdf:rest N47db0dc307874a3ea4d714d63c53d628
162 Nbd5beab0a2324a4e86e2042c666ec1a0 rdf:first sg:person.01055332110.42
163 rdf:rest Naab12de7778441b782a6a9a4566954b8
164 Nd5094ed6cec443dd81d890be51f868cb schema:name doi
165 schema:value 10.1007/s10646-005-0033-5
166 rdf:type schema:PropertyValue
167 Nd587bdfae5c84d98aa9c463b63e98121 schema:issueNumber 8
168 rdf:type schema:PublicationIssue
169 Nd5ad7c0d333e4b6794a42c2c6530e83f schema:volumeNumber 14
170 rdf:type schema:PublicationVolume
171 Nd7c992d88e414bc1841ff6d1f01749a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Time
173 rdf:type schema:DefinedTerm
174 Ne5f42bfb59204dd0993c1213c826ec9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Birds
176 rdf:type schema:DefinedTerm
177 Nf19e31ede20142b7bffa201c4314219b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name United Kingdom
179 rdf:type schema:DefinedTerm
180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biological Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
184 schema:name Ecology
185 rdf:type schema:DefinedTerm
186 sg:journal.1129600 schema:issn 0963-9292
187 1573-3017
188 schema:name Ecotoxicology
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01055332110.42 schema:affiliation grid-institutes:grid.9435.b
192 schema:familyName Sibly
193 schema:givenName R.M.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055332110.42
195 rdf:type schema:Person
196 sg:person.01227752311.33 schema:affiliation grid-institutes:grid.422751.7
197 schema:familyName Akçakaya
198 schema:givenName H.R.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227752311.33
200 rdf:type schema:Person
201 sg:person.01350232334.20 schema:affiliation grid-institutes:None
202 schema:familyName Topping
203 schema:givenName C.J.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350232334.20
205 rdf:type schema:Person
206 sg:pub.10.1007/3-540-36290-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007809575
207 https://doi.org/10.1007/3-540-36290-8
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/978-1-4615-4661-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089498465
210 https://doi.org/10.1007/978-1-4615-4661-0_25
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/bf00388066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122066
213 https://doi.org/10.1007/bf00388066
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/bf00776426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029454084
216 https://doi.org/10.1007/bf00776426
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s10646-005-0027-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012367427
219 https://doi.org/10.1007/s10646-005-0027-3
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s10646-005-0028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022079322
222 https://doi.org/10.1007/s10646-005-0028-2
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s10646-005-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029580452
225 https://doi.org/10.1007/s10646-005-0035-3
226 rdf:type schema:CreativeWork
227 sg:pub.10.1023/a:1008867602813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010449749
228 https://doi.org/10.1023/a:1008867602813
229 rdf:type schema:CreativeWork
230 sg:pub.10.1023/b:bioc.0000004313.86836.ab schema:sameAs https://app.dimensions.ai/details/publication/pub.1009756871
231 https://doi.org/10.1023/b:bioc.0000004313.86836.ab
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/35006050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028734571
234 https://doi.org/10.1038/35006050
235 rdf:type schema:CreativeWork
236 grid-institutes:None schema:alternateName EcoSol, Fårupvej 54, DK-8410, Rønde, Denmark
237 schema:name EcoSol, Fårupvej 54, DK-8410, Rønde, Denmark
238 rdf:type schema:Organization
239 grid-institutes:grid.21106.34 schema:alternateName Department of Wildlife Ecology, University of Maine, 04469-5755, Orono, ME, USA
240 schema:name Department of Wildlife Ecology, University of Maine, 04469-5755, Orono, ME, USA
241 rdf:type schema:Organization
242 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA
243 schema:name Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA
244 rdf:type schema:Organization
245 grid-institutes:grid.9435.b schema:alternateName School of Animal and Microbial Sciences, University of Reading, Whiteknights, RG6 6AJ, Reading, UK
246 schema:name School of Animal and Microbial Sciences, University of Reading, Whiteknights, RG6 6AJ, Reading, UK
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...