Seasonality of fish recruitment in a pulsed floodplain ecosystem: Estimation and hydrological controls View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

John V. Gatto, Joel C. Trexler

ABSTRACT

Hydrological variation is believed to be the main density-independent factor that controls fish recruitment in floodplain ecosystems. However, our ability to fully understand these controls is greatly impeded by the size-selective nature of sampling gear. To illustrate the benefits of estimating the effects of size-selective bias on population parameters, we used a cohort analysis to reconstruct a 20-year time series of larval/neonate abundance for five species in the Order Cyprinodontiformes along a hydrological gradient in the Florida Everglades. We applied generalized linear models to estimate recruit density and analyze size-selectivity for our sampling gear. The adjusted data resulted in a 7 to 40-fold increase in estimated recruit density, which varied seasonally at regional and local spatial scales and was greatest at the end of the wet season (October, December) for most species; no consistent seasonality in recruitment of any species was apparent in the raw data. Using the adjusted data, we detected a positive relationship between recruit density and recovery time following marsh drying events at short and intermediate-hydroperiod sites for all species. However, depth was the major hydrological driver of recruitment at long-hydroperiod sites. Within sites, we observed interspecific variation in species responses to changes in annual hydroperiod. We suggest that fisheries models can be applied to data from any meshed sampling gear to improve abundance estimates and reveal seasonal recruitment dynamics. Our use of such models revealed seasonal recruitment dynamics that were previously undetected, with implications for planning of restoration and management of the Everglades. More... »

PAGES

595-613

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10641-019-00856-9

DOI

http://dx.doi.org/10.1007/s10641-019-00856-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Department of Biological Sciences, Florida International University, Miami, 33199, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gatto", 
        "givenName": "John V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Department of Biological Sciences, Florida International University, Miami, 33199, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trexler", 
        "givenName": "Joel C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/rra.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000675224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rra.720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001470266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001920898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11160-004-3551-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007570986", 
          "https://doi.org/10.1007/s11160-004-3551-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f03-057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008201855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lom.2014.12.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010843948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/mf15421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011593427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fishres.2007.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015037481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016307602735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015855171", 
          "https://doi.org/10.1023/a:1016307602735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1643/ce-14-040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016117229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f2011-017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016739289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004073125007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017875079", 
          "https://doi.org/10.1023/a:1004073125007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8649.1989.tb03043.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019273561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8649.1989.tb03043.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019273561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00002386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019908178", 
          "https://doi.org/10.1007/bf00002386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fishres.2012.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022877924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/mf06025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023076950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-7836(92)90076-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023289685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007536009916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024899649", 
          "https://doi.org/10.1023/a:1007536009916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fishres.2003.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027037371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02755947.2016.1152331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028322577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8649.2010.02867.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032995644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1420-9101.2011.02383.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036012699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13157-013-0375-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037263909", 
          "https://doi.org/10.1007/s13157-013-0375-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008838220001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039172615", 
          "https://doi.org/10.1023/a:1008838220001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19425120.2016.1167796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040435781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2427.2004.01256.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040929413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19425120.2011.651521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/brv.12194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042639007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043484379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043484379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f84-151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044365943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1577/1548-8659(1997)126<1012:sfivhe>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045269147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2011.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045869447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420039412-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047383960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f92-225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047822049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2427.2007.01855.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoleng.2014.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051013617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-7836(98)00199-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052405889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/001121610x536969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052544056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/001121610x536969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052544056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0049124104268644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053958566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0049124104268644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053958566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmsc.1999.0524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054490714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1577/m05-133.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068061043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2960/j.v44.m680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070927106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2960/j.v8.a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092387876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108331227", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781444341812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109701566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Hydrological variation is believed to be the main density-independent factor that controls fish recruitment in floodplain ecosystems. However, our ability to fully understand these controls is greatly impeded by the size-selective nature of sampling gear. To illustrate the benefits of estimating the effects of size-selective bias on population parameters, we used a cohort analysis to reconstruct a 20-year time series of larval/neonate abundance for five species in the Order Cyprinodontiformes along a hydrological gradient in the Florida Everglades. We applied generalized linear models to estimate recruit density and analyze size-selectivity for our sampling gear. The adjusted data resulted in a 7 to 40-fold increase in estimated recruit density, which varied seasonally at regional and local spatial scales and was greatest at the end of the wet season (October, December) for most species; no consistent seasonality in recruitment of any species was apparent in the raw data. Using the adjusted data, we detected a positive relationship between recruit density and recovery time following marsh drying events at short and intermediate-hydroperiod sites for all species. However, depth was the major hydrological driver of recruitment at long-hydroperiod sites. Within sites, we observed interspecific variation in species responses to changes in annual hydroperiod. We suggest that fisheries models can be applied to data from any meshed sampling gear to improve abundance estimates and reveal seasonal recruitment dynamics. Our use of such models revealed seasonal recruitment dynamics that were previously undetected, with implications for planning of restoration and management of the Everglades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10641-019-00856-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3479998", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035234", 
        "issn": [
          "0378-1909", 
          "1573-5133"
        ], 
        "name": "Environmental Biology of Fishes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "name": "Seasonality of fish recruitment in a pulsed floodplain ecosystem: Estimation and hydrological controls", 
    "pagination": "595-613", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec62aa733223f514499231efbe9abf410614555d1254fba20f9b983d0f1cacec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10641-019-00856-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10641-019-00856-9", 
      "https://app.dimensions.ai/details/publication/pub.1112731729"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10641-019-00856-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10641-019-00856-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10641-019-00856-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10641-019-00856-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10641-019-00856-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10641-019-00856-9 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Nfb4f89297ee643b7bca560a6635beb6a
4 schema:citation sg:pub.10.1007/bf00002386
5 sg:pub.10.1007/s11160-004-3551-y
6 sg:pub.10.1007/s13157-013-0375-3
7 sg:pub.10.1023/a:1004073125007
8 sg:pub.10.1023/a:1007536009916
9 sg:pub.10.1023/a:1008838220001
10 sg:pub.10.1023/a:1016307602735
11 https://app.dimensions.ai/details/publication/pub.1108331227
12 https://doi.org/10.1002/9781444341812
13 https://doi.org/10.1002/eco.221
14 https://doi.org/10.1002/eco.56
15 https://doi.org/10.1002/rra.1061
16 https://doi.org/10.1002/rra.720
17 https://doi.org/10.1006/jmsc.1999.0524
18 https://doi.org/10.1016/0165-7836(92)90076-6
19 https://doi.org/10.1016/j.ecoenv.2011.09.015
20 https://doi.org/10.1016/j.ecoleng.2014.12.009
21 https://doi.org/10.1016/j.fishres.2003.09.032
22 https://doi.org/10.1016/j.fishres.2007.01.006
23 https://doi.org/10.1016/j.fishres.2012.07.025
24 https://doi.org/10.1016/s0165-7836(98)00199-4
25 https://doi.org/10.1071/mf06025
26 https://doi.org/10.1071/mf15421
27 https://doi.org/10.1080/02755947.2016.1152331
28 https://doi.org/10.1080/19425120.2011.651521
29 https://doi.org/10.1080/19425120.2016.1167796
30 https://doi.org/10.1111/brv.12194
31 https://doi.org/10.1111/j.1095-8649.1989.tb03043.x
32 https://doi.org/10.1111/j.1095-8649.2010.02867.x
33 https://doi.org/10.1111/j.1365-2427.2004.01256.x
34 https://doi.org/10.1111/j.1365-2427.2007.01855.x
35 https://doi.org/10.1111/j.1420-9101.2011.02383.x
36 https://doi.org/10.1139/f03-057
37 https://doi.org/10.1139/f2011-017
38 https://doi.org/10.1139/f84-151
39 https://doi.org/10.1139/f92-225
40 https://doi.org/10.1163/001121610x536969
41 https://doi.org/10.1177/0049124104268644
42 https://doi.org/10.1201/9781420039412-8
43 https://doi.org/10.1577/1548-8659(1997)126<1012:sfivhe>2.3.co;2
44 https://doi.org/10.1577/m05-133.1
45 https://doi.org/10.1643/ce-14-040
46 https://doi.org/10.2960/j.v44.m680
47 https://doi.org/10.2960/j.v8.a6
48 https://doi.org/10.4319/lom.2014.12.86
49 schema:datePublished 2019-04
50 schema:datePublishedReg 2019-04-01
51 schema:description Hydrological variation is believed to be the main density-independent factor that controls fish recruitment in floodplain ecosystems. However, our ability to fully understand these controls is greatly impeded by the size-selective nature of sampling gear. To illustrate the benefits of estimating the effects of size-selective bias on population parameters, we used a cohort analysis to reconstruct a 20-year time series of larval/neonate abundance for five species in the Order Cyprinodontiformes along a hydrological gradient in the Florida Everglades. We applied generalized linear models to estimate recruit density and analyze size-selectivity for our sampling gear. The adjusted data resulted in a 7 to 40-fold increase in estimated recruit density, which varied seasonally at regional and local spatial scales and was greatest at the end of the wet season (October, December) for most species; no consistent seasonality in recruitment of any species was apparent in the raw data. Using the adjusted data, we detected a positive relationship between recruit density and recovery time following marsh drying events at short and intermediate-hydroperiod sites for all species. However, depth was the major hydrological driver of recruitment at long-hydroperiod sites. Within sites, we observed interspecific variation in species responses to changes in annual hydroperiod. We suggest that fisheries models can be applied to data from any meshed sampling gear to improve abundance estimates and reveal seasonal recruitment dynamics. Our use of such models revealed seasonal recruitment dynamics that were previously undetected, with implications for planning of restoration and management of the Everglades.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N0a5d47fc99124f449fea2851132ebd5c
56 N333f257d15c944b7960f9241b1507e7a
57 sg:journal.1035234
58 schema:name Seasonality of fish recruitment in a pulsed floodplain ecosystem: Estimation and hydrological controls
59 schema:pagination 595-613
60 schema:productId Nc526861e2b64449bb69fd8d952d1cbd4
61 Nca77c7ba91674697ae8883c26a389b5b
62 Nede519d9d6a247a8aac94b9c81bf6aeb
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731729
64 https://doi.org/10.1007/s10641-019-00856-9
65 schema:sdDatePublished 2019-04-11T13:17
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N2a605d1befca49ed85362f3285174632
68 schema:url https://link.springer.com/10.1007%2Fs10641-019-00856-9
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0a5d47fc99124f449fea2851132ebd5c schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 N2a605d1befca49ed85362f3285174632 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N333f257d15c944b7960f9241b1507e7a schema:volumeNumber 102
77 rdf:type schema:PublicationVolume
78 N3fedfb02a6ff4736a2d5f11ce12fbce3 rdf:first N4eebc714519748c5aeda4bfdd71c3725
79 rdf:rest rdf:nil
80 N4eebc714519748c5aeda4bfdd71c3725 schema:affiliation https://www.grid.ac/institutes/grid.65456.34
81 schema:familyName Trexler
82 schema:givenName Joel C.
83 rdf:type schema:Person
84 N7cf6744471e64797a8cc24f623a11c1b schema:affiliation https://www.grid.ac/institutes/grid.65456.34
85 schema:familyName Gatto
86 schema:givenName John V.
87 rdf:type schema:Person
88 Nc526861e2b64449bb69fd8d952d1cbd4 schema:name dimensions_id
89 schema:value pub.1112731729
90 rdf:type schema:PropertyValue
91 Nca77c7ba91674697ae8883c26a389b5b schema:name readcube_id
92 schema:value ec62aa733223f514499231efbe9abf410614555d1254fba20f9b983d0f1cacec
93 rdf:type schema:PropertyValue
94 Nede519d9d6a247a8aac94b9c81bf6aeb schema:name doi
95 schema:value 10.1007/s10641-019-00856-9
96 rdf:type schema:PropertyValue
97 Nfb4f89297ee643b7bca560a6635beb6a rdf:first N7cf6744471e64797a8cc24f623a11c1b
98 rdf:rest N3fedfb02a6ff4736a2d5f11ce12fbce3
99 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biological Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
103 schema:name Ecology
104 rdf:type schema:DefinedTerm
105 sg:grant.3479998 http://pending.schema.org/fundedItem sg:pub.10.1007/s10641-019-00856-9
106 rdf:type schema:MonetaryGrant
107 sg:journal.1035234 schema:issn 0378-1909
108 1573-5133
109 schema:name Environmental Biology of Fishes
110 rdf:type schema:Periodical
111 sg:pub.10.1007/bf00002386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019908178
112 https://doi.org/10.1007/bf00002386
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11160-004-3551-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007570986
115 https://doi.org/10.1007/s11160-004-3551-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s13157-013-0375-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037263909
118 https://doi.org/10.1007/s13157-013-0375-3
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1004073125007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017875079
121 https://doi.org/10.1023/a:1004073125007
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1007536009916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024899649
124 https://doi.org/10.1023/a:1007536009916
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1008838220001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039172615
127 https://doi.org/10.1023/a:1008838220001
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1016307602735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015855171
130 https://doi.org/10.1023/a:1016307602735
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1108331227 schema:CreativeWork
133 https://doi.org/10.1002/9781444341812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109701566
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/eco.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001920898
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/eco.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043484379
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/rra.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000675224
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/rra.720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001470266
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1006/jmsc.1999.0524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054490714
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0165-7836(92)90076-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023289685
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ecoenv.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045869447
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ecoleng.2014.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051013617
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.fishres.2003.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027037371
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.fishres.2007.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015037481
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.fishres.2012.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022877924
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0165-7836(98)00199-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052405889
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1071/mf06025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023076950
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1071/mf15421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011593427
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/02755947.2016.1152331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028322577
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/19425120.2011.651521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537330
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/19425120.2016.1167796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040435781
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/brv.12194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042639007
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/j.1095-8649.1989.tb03043.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019273561
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1111/j.1095-8649.2010.02867.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032995644
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/j.1365-2427.2004.01256.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040929413
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.1365-2427.2007.01855.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050441253
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1420-9101.2011.02383.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036012699
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1139/f03-057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008201855
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1139/f2011-017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016739289
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1139/f84-151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044365943
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1139/f92-225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047822049
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1163/001121610x536969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052544056
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1177/0049124104268644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053958566
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1201/9781420039412-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047383960
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1577/1548-8659(1997)126<1012:sfivhe>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045269147
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1577/m05-133.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068061043
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1643/ce-14-040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016117229
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2960/j.v44.m680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070927106
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2960/j.v8.a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092387876
204 rdf:type schema:CreativeWork
205 https://doi.org/10.4319/lom.2014.12.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010843948
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.65456.34 schema:alternateName Florida International University
208 schema:name Department of Biological Sciences, Florida International University, Miami, 33199, Florida, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...