Enhanced Geospatial Validity for Meta-analysis and Environmental Benefit Transfer: An Application to Water Quality Improvements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04-11

AUTHORS

Robert J. Johnston, Elena Y. Besedin, Ryan Stapler

ABSTRACT

Meta-regression models are commonly used within benefit transfer to estimate willingness to pay (WTP) for environmental quality improvements. Theory suggests that these estimates should be sensitive to geospatial factors including resource scale, market extent, and the availability of substitutes and complements. Valuation meta-regression models addressing the quantity of non-market commodities sometimes incorporate spatial variables that proxy for a subset of these effects. However, meta-analyses of WTP for environmental quality generally omit geospatial factors such as these, leading to benefit transfers that are invariant to these factors. This paper reports on a meta-regression model for water quality benefit transfer that incorporates spatially explicit factors predicted by theory to influence WTP. The metadata are drawn from stated preference studies that estimate per household WTP for water quality changes in United States water bodies, and combine primary study information with extensive geospatial data from external sources. Results find that geospatial variables are associated with significant WTP variations as predicted by theory, and that inclusion of these variables reduces transfer errors. More... »

PAGES

343-375

References to SciGraph publications

  • 2013-01-18. Due Diligence in Meta-analyses to Support Benefit Transfers in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2015-06-03. Meta-analysis: Rationale, Issues and Applications in BENEFIT TRANSFER OF ENVIRONMENTAL AND RESOURCE VALUES
  • 2015-06-03. Meta-analysis: Econometric Advances and New Perspectives Toward Data Synthesis and Robustness in BENEFIT TRANSFER OF ENVIRONMENTAL AND RESOURCE VALUES
  • 2015-06-03. Meta-analysis: Statistical Methods in BENEFIT TRANSFER OF ENVIRONMENTAL AND RESOURCE VALUES
  • 2008-08-23. Meta-Analysis, Benefit Transfer, and Methodological Covariates: Implications for Transfer Error in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2002-06. Is Meta-Analysis a Noah's Ark for Non-Market Valuation? in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2015-06-03. Spatial and Geographical Aspects of Benefit Transfer in BENEFIT TRANSFER OF ENVIRONMENTAL AND RESOURCE VALUES
  • 2006-02. The Empirics of Wetland Valuation: A Comprehensive Summary and a Meta-Analysis of the Literature in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2012-05-19. Distance Decay Functions for Iconic Assets: Assessing National Values to Protect the Health of the Great Barrier Reef in Australia in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2007-01-01. Transferring Landscape Values: How And How Accurately? in ENVIRONMENTAL VALUE TRANSFER: ISSUES AND METHODS
  • 2013-10-09. Meta-Modeling and Benefit Transfer: The Empirical Relevance of Source-Consistency in Welfare Measures in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2011-12-30. Using Meta-Analysis and GIS for Value Transfer and Scaling Up: Valuing Climate Change Induced Losses of European Wetlands in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2015. Benefit Transfer of Environmental and Resource Values, A Guide for Researchers and Practitioners in NONE
  • 2015-06-03. GIS-Based Mapping of Ecosystem Services: The Case of Coral Reefs in BENEFIT TRANSFER OF ENVIRONMENTAL AND RESOURCE VALUES
  • 2011-05-03. Making Benefit Transfers Work: Deriving and Testing Principles for Value Transfers for Similar and Dissimilar Sites Using a Case Study of the Non-Market Benefits of Water Quality Improvements Across Europe in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2007-09-01. Willingness to Pay and the Cost of Commitment: An Empirical Specification and Test in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 1999-12. A meta-analysis of wetland contingent valuation studies in REGIONAL ENVIRONMENTAL CHANGE
  • 2013-10-12. Modeling Spatial Patchiness and Hot Spots in Stated Preference Willingness to Pay in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2007-12-02. Benefit Transfer Equivalence Tests with Non-normal Distributions in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2008-12-24. The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 1993-10. Differentiating use and nonuse values for coastal pond water quality improvements in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10640-016-0021-7

    DOI

    http://dx.doi.org/10.1007/s10640-016-0021-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021284915


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "George Perkins Marsh Institute and Department of Economics, Clark University, 950 Main St., 01610, Worcester, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.254277.1", 
              "name": [
                "George Perkins Marsh Institute and Department of Economics, Clark University, 950 Main St., 01610, Worcester, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Johnston", 
            "givenName": "Robert J.", 
            "id": "sg:person.01023005232.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023005232.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environment and Natural Resources Division, Abt Associates Inc., Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.417585.a", 
              "name": [
                "Environment and Natural Resources Division, Abt Associates Inc., Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Besedin", 
            "givenName": "Elena Y.", 
            "id": "sg:person.01226666113.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226666113.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Athenahealth, Watertown, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.497101.a", 
              "name": [
                "Athenahealth, Watertown, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stapler", 
            "givenName": "Ryan", 
            "id": "sg:person.013275215221.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275215221.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1015567316109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010148730", 
              "https://doi.org/10.1023/a:1015567316109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9930-0_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048706790", 
              "https://doi.org/10.1007/978-94-017-9930-0_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-5405-x_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026887635", 
              "https://doi.org/10.1007/1-4020-5405-x_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-005-3104-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001963239", 
              "https://doi.org/10.1007/s10640-005-3104-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-008-9230-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008000546", 
              "https://doi.org/10.1007/s10640-008-9230-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9930-0_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013974307", 
              "https://doi.org/10.1007/978-94-017-9930-0_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9930-0_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052354473", 
              "https://doi.org/10.1007/978-94-017-9930-0_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-008-9253-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031198602", 
              "https://doi.org/10.1007/s10640-008-9253-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9930-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019771086", 
              "https://doi.org/10.1007/978-94-017-9930-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9930-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003466996", 
              "https://doi.org/10.1007/978-94-017-9930-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-013-9730-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013441443", 
              "https://doi.org/10.1007/s10640-013-9730-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s101130050007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045612121", 
              "https://doi.org/10.1007/s101130050007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-011-9476-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034253618", 
              "https://doi.org/10.1007/s10640-011-9476-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-011-9535-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008954422", 
              "https://doi.org/10.1007/s10640-011-9535-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-007-9153-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017763099", 
              "https://doi.org/10.1007/s10640-007-9153-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-007-9172-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028627131", 
              "https://doi.org/10.1007/s10640-007-9172-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9930-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048265011", 
              "https://doi.org/10.1007/978-94-017-9930-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-012-9565-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026431511", 
              "https://doi.org/10.1007/s10640-012-9565-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-012-9630-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048438336", 
              "https://doi.org/10.1007/s10640-012-9630-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10640-013-9731-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042150319", 
              "https://doi.org/10.1007/s10640-013-9731-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00310250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086069504", 
              "https://doi.org/10.1007/bf00310250"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04-11", 
        "datePublishedReg": "2016-04-11", 
        "description": "Meta-regression models are commonly used within benefit transfer to estimate willingness to pay (WTP) for environmental quality improvements. Theory suggests that these estimates should be sensitive to geospatial factors including resource scale, market extent, and the availability of substitutes and complements. Valuation meta-regression models addressing the quantity of non-market commodities sometimes incorporate spatial variables that proxy for a subset of these effects. However, meta-analyses of WTP for environmental quality generally omit geospatial factors such as these, leading to benefit transfers that are invariant to these factors. This paper reports on a meta-regression model for water quality benefit transfer that incorporates spatially explicit factors predicted by theory to influence WTP. The metadata are drawn from stated preference studies that estimate per household WTP for water quality changes in United States water bodies, and combine primary study information with extensive geospatial data from external sources. Results find that geospatial variables are associated with significant WTP variations as predicted by theory, and that inclusion of these variables reduces transfer errors.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10640-016-0021-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7772618", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049212", 
            "issn": [
              "0924-6460", 
              "1573-1502"
            ], 
            "name": "Environmental and Resource Economics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "68"
          }
        ], 
        "keywords": [
          "benefit transfer", 
          "non-market commodities", 
          "meta-regression models", 
          "stated preference studies", 
          "availability of substitutes", 
          "environmental benefit transfer", 
          "environmental quality improvement", 
          "market extent", 
          "household WTP", 
          "water quality improvement", 
          "preference studies", 
          "WTP", 
          "geospatial factors", 
          "explicit factors", 
          "environmental quality", 
          "transfer errors", 
          "Resources Scale", 
          "quality changes", 
          "commodities", 
          "willingness", 
          "quality improvement", 
          "variables", 
          "water quality changes", 
          "external sources", 
          "proxy", 
          "theory", 
          "model", 
          "geospatial variables", 
          "study information", 
          "substitute", 
          "estimates", 
          "spatial variables", 
          "factors", 
          "extent", 
          "complement", 
          "transfer", 
          "quantity", 
          "availability", 
          "changes", 
          "data", 
          "quality", 
          "information", 
          "improvement", 
          "source", 
          "effect", 
          "geospatial data", 
          "inclusion", 
          "results", 
          "validity", 
          "error", 
          "variation", 
          "scale", 
          "study", 
          "Meta-Analysis", 
          "applications", 
          "body", 
          "water bodies", 
          "subset", 
          "metadata", 
          "paper", 
          "Valuation meta-regression models", 
          "water quality benefit transfer", 
          "quality benefit transfer", 
          "United States water bodies", 
          "States water bodies", 
          "primary study information", 
          "extensive geospatial data", 
          "significant WTP variations", 
          "WTP variations", 
          "Enhanced Geospatial Validity", 
          "Geospatial Validity"
        ], 
        "name": "Enhanced Geospatial Validity for Meta-analysis and Environmental Benefit Transfer: An Application to Water Quality Improvements", 
        "pagination": "343-375", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021284915"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10640-016-0021-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10640-016-0021-7", 
          "https://app.dimensions.ai/details/publication/pub.1021284915"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_687.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10640-016-0021-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10640-016-0021-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10640-016-0021-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10640-016-0021-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10640-016-0021-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      22 PREDICATES      117 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10640-016-0021-7 schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 schema:author Na534fb55bbde4ca4979da5dc9aaa53b5
    4 schema:citation sg:pub.10.1007/1-4020-5405-x_4
    5 sg:pub.10.1007/978-94-017-9930-0
    6 sg:pub.10.1007/978-94-017-9930-0_15
    7 sg:pub.10.1007/978-94-017-9930-0_16
    8 sg:pub.10.1007/978-94-017-9930-0_17
    9 sg:pub.10.1007/978-94-017-9930-0_18
    10 sg:pub.10.1007/978-94-017-9930-0_20
    11 sg:pub.10.1007/bf00310250
    12 sg:pub.10.1007/s101130050007
    13 sg:pub.10.1007/s10640-005-3104-4
    14 sg:pub.10.1007/s10640-007-9153-0
    15 sg:pub.10.1007/s10640-007-9172-x
    16 sg:pub.10.1007/s10640-008-9230-z
    17 sg:pub.10.1007/s10640-008-9253-5
    18 sg:pub.10.1007/s10640-011-9476-8
    19 sg:pub.10.1007/s10640-011-9535-1
    20 sg:pub.10.1007/s10640-012-9565-3
    21 sg:pub.10.1007/s10640-012-9630-y
    22 sg:pub.10.1007/s10640-013-9730-3
    23 sg:pub.10.1007/s10640-013-9731-2
    24 sg:pub.10.1023/a:1015567316109
    25 schema:datePublished 2016-04-11
    26 schema:datePublishedReg 2016-04-11
    27 schema:description Meta-regression models are commonly used within benefit transfer to estimate willingness to pay (WTP) for environmental quality improvements. Theory suggests that these estimates should be sensitive to geospatial factors including resource scale, market extent, and the availability of substitutes and complements. Valuation meta-regression models addressing the quantity of non-market commodities sometimes incorporate spatial variables that proxy for a subset of these effects. However, meta-analyses of WTP for environmental quality generally omit geospatial factors such as these, leading to benefit transfers that are invariant to these factors. This paper reports on a meta-regression model for water quality benefit transfer that incorporates spatially explicit factors predicted by theory to influence WTP. The metadata are drawn from stated preference studies that estimate per household WTP for water quality changes in United States water bodies, and combine primary study information with extensive geospatial data from external sources. Results find that geospatial variables are associated with significant WTP variations as predicted by theory, and that inclusion of these variables reduces transfer errors.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N58de5946c2c7435bac82bed3efc519a2
    32 N923f0a5128bf42d89caf37195dd66483
    33 sg:journal.1049212
    34 schema:keywords Enhanced Geospatial Validity
    35 Geospatial Validity
    36 Meta-Analysis
    37 Resources Scale
    38 States water bodies
    39 United States water bodies
    40 Valuation meta-regression models
    41 WTP
    42 WTP variations
    43 applications
    44 availability
    45 availability of substitutes
    46 benefit transfer
    47 body
    48 changes
    49 commodities
    50 complement
    51 data
    52 effect
    53 environmental benefit transfer
    54 environmental quality
    55 environmental quality improvement
    56 error
    57 estimates
    58 explicit factors
    59 extensive geospatial data
    60 extent
    61 external sources
    62 factors
    63 geospatial data
    64 geospatial factors
    65 geospatial variables
    66 household WTP
    67 improvement
    68 inclusion
    69 information
    70 market extent
    71 meta-regression models
    72 metadata
    73 model
    74 non-market commodities
    75 paper
    76 preference studies
    77 primary study information
    78 proxy
    79 quality
    80 quality benefit transfer
    81 quality changes
    82 quality improvement
    83 quantity
    84 results
    85 scale
    86 significant WTP variations
    87 source
    88 spatial variables
    89 stated preference studies
    90 study
    91 study information
    92 subset
    93 substitute
    94 theory
    95 transfer
    96 transfer errors
    97 validity
    98 variables
    99 variation
    100 water bodies
    101 water quality benefit transfer
    102 water quality changes
    103 water quality improvement
    104 willingness
    105 schema:name Enhanced Geospatial Validity for Meta-analysis and Environmental Benefit Transfer: An Application to Water Quality Improvements
    106 schema:pagination 343-375
    107 schema:productId N1dc3145c8ea441199b93aae8b10b8151
    108 Ned818fa2fbdf4593865b77077d3919e5
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021284915
    110 https://doi.org/10.1007/s10640-016-0021-7
    111 schema:sdDatePublished 2021-11-01T18:26
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N9053eee4edcc4b26935f52ca95cc27db
    114 schema:url https://doi.org/10.1007/s10640-016-0021-7
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0bafc09cdb5b4bca83b833a654587990 rdf:first sg:person.01226666113.67
    119 rdf:rest N3733a1e7ce5b4fc998009b443dcf5b10
    120 N1dc3145c8ea441199b93aae8b10b8151 schema:name dimensions_id
    121 schema:value pub.1021284915
    122 rdf:type schema:PropertyValue
    123 N3733a1e7ce5b4fc998009b443dcf5b10 rdf:first sg:person.013275215221.39
    124 rdf:rest rdf:nil
    125 N58de5946c2c7435bac82bed3efc519a2 schema:issueNumber 2
    126 rdf:type schema:PublicationIssue
    127 N9053eee4edcc4b26935f52ca95cc27db schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 N923f0a5128bf42d89caf37195dd66483 schema:volumeNumber 68
    130 rdf:type schema:PublicationVolume
    131 Na534fb55bbde4ca4979da5dc9aaa53b5 rdf:first sg:person.01023005232.42
    132 rdf:rest N0bafc09cdb5b4bca83b833a654587990
    133 Ned818fa2fbdf4593865b77077d3919e5 schema:name doi
    134 schema:value 10.1007/s10640-016-0021-7
    135 rdf:type schema:PropertyValue
    136 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Economics
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Applied Economics
    141 rdf:type schema:DefinedTerm
    142 sg:grant.7772618 http://pending.schema.org/fundedItem sg:pub.10.1007/s10640-016-0021-7
    143 rdf:type schema:MonetaryGrant
    144 sg:journal.1049212 schema:issn 0924-6460
    145 1573-1502
    146 schema:name Environmental and Resource Economics
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.01023005232.42 schema:affiliation grid-institutes:grid.254277.1
    150 schema:familyName Johnston
    151 schema:givenName Robert J.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023005232.42
    153 rdf:type schema:Person
    154 sg:person.01226666113.67 schema:affiliation grid-institutes:grid.417585.a
    155 schema:familyName Besedin
    156 schema:givenName Elena Y.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226666113.67
    158 rdf:type schema:Person
    159 sg:person.013275215221.39 schema:affiliation grid-institutes:grid.497101.a
    160 schema:familyName Stapler
    161 schema:givenName Ryan
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275215221.39
    163 rdf:type schema:Person
    164 sg:pub.10.1007/1-4020-5405-x_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026887635
    165 https://doi.org/10.1007/1-4020-5405-x_4
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-94-017-9930-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003466996
    168 https://doi.org/10.1007/978-94-017-9930-0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/978-94-017-9930-0_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013974307
    171 https://doi.org/10.1007/978-94-017-9930-0_15
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-94-017-9930-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019771086
    174 https://doi.org/10.1007/978-94-017-9930-0_16
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/978-94-017-9930-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048706790
    177 https://doi.org/10.1007/978-94-017-9930-0_17
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/978-94-017-9930-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048265011
    180 https://doi.org/10.1007/978-94-017-9930-0_18
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/978-94-017-9930-0_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052354473
    183 https://doi.org/10.1007/978-94-017-9930-0_20
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf00310250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086069504
    186 https://doi.org/10.1007/bf00310250
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s101130050007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045612121
    189 https://doi.org/10.1007/s101130050007
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10640-005-3104-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963239
    192 https://doi.org/10.1007/s10640-005-3104-4
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10640-007-9153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017763099
    195 https://doi.org/10.1007/s10640-007-9153-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10640-007-9172-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028627131
    198 https://doi.org/10.1007/s10640-007-9172-x
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10640-008-9230-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008000546
    201 https://doi.org/10.1007/s10640-008-9230-z
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s10640-008-9253-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031198602
    204 https://doi.org/10.1007/s10640-008-9253-5
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10640-011-9476-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034253618
    207 https://doi.org/10.1007/s10640-011-9476-8
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s10640-011-9535-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008954422
    210 https://doi.org/10.1007/s10640-011-9535-1
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s10640-012-9565-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026431511
    213 https://doi.org/10.1007/s10640-012-9565-3
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s10640-012-9630-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048438336
    216 https://doi.org/10.1007/s10640-012-9630-y
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s10640-013-9730-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013441443
    219 https://doi.org/10.1007/s10640-013-9730-3
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s10640-013-9731-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042150319
    222 https://doi.org/10.1007/s10640-013-9731-2
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1023/a:1015567316109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010148730
    225 https://doi.org/10.1023/a:1015567316109
    226 rdf:type schema:CreativeWork
    227 grid-institutes:grid.254277.1 schema:alternateName George Perkins Marsh Institute and Department of Economics, Clark University, 950 Main St., 01610, Worcester, MA, USA
    228 schema:name George Perkins Marsh Institute and Department of Economics, Clark University, 950 Main St., 01610, Worcester, MA, USA
    229 rdf:type schema:Organization
    230 grid-institutes:grid.417585.a schema:alternateName Environment and Natural Resources Division, Abt Associates Inc., Cambridge, MA, USA
    231 schema:name Environment and Natural Resources Division, Abt Associates Inc., Cambridge, MA, USA
    232 rdf:type schema:Organization
    233 grid-institutes:grid.497101.a schema:alternateName Athenahealth, Watertown, MA, USA
    234 schema:name Athenahealth, Watertown, MA, USA
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...