Random Regret Minimization: Exploration of a New Choice Model for Environmental and Resource Economics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-09-08

AUTHORS

Mara Thiene, Marco Boeri, Caspar G. Chorus

ABSTRACT

This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the dominant choice-modelling paradigm based on Random Utility Maximization-theory (RUM-theory). We highlight how RRM-based models provide closed form, logit-type formulations for choice probabilities that allow for capturing semi-compensatory behaviour and choice set-composition effects while being equally parsimonious as their utilitarian counterparts. Using data from a Stated Choice-experiment aimed at identifying valuations of characteristics of nature parks, we compare RRM-based models and RUM-based models in terms of parameter estimates, goodness of fit, elasticities and consequential policy implications. More... »

PAGES

413-429

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10640-011-9505-7

DOI

http://dx.doi.org/10.1007/s10640-011-9505-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033436435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dep. TESAF, University of Padua, Viale dell\u2019Universit\u00e0, 35020, Legnaro, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Dep. TESAF, University of Padua, Viale dell\u2019Universit\u00e0, 35020, Legnaro, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiene", 
        "givenName": "Mara", 
        "id": "sg:person.015014004730.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015014004730.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gibson Institute for Land, Food and the Environment, Queen\u2019s University of Belfast, Belfast, Northern Ireland, UK", 
          "id": "http://www.grid.ac/institutes/grid.4777.3", 
          "name": [
            "Gibson Institute for Land, Food and the Environment, Queen\u2019s University of Belfast, Belfast, Northern Ireland, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boeri", 
        "givenName": "Marco", 
        "id": "sg:person.01074150551.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074150551.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chorus", 
        "givenName": "Caspar G.", 
        "id": "sg:person.012471233050.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471233050.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nn1514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014779741", 
          "https://doi.org/10.1038/nn1514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-009-9283-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019196047", 
          "https://doi.org/10.1007/s10640-009-9283-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-010-9420-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053700873", 
          "https://doi.org/10.1007/s10640-010-9420-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-009-9291-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001514715", 
          "https://doi.org/10.1007/s10640-009-9291-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-008-9198-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006399828", 
          "https://doi.org/10.1007/s10640-008-9198-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01065370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014856583", 
          "https://doi.org/10.1007/bf01065370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016077425039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649896", 
          "https://doi.org/10.1023/a:1016077425039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-008-9250-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024377979", 
          "https://doi.org/10.1007/s10640-008-9250-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-005-3794-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042398270", 
          "https://doi.org/10.1007/s10640-005-3794-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09-08", 
    "datePublishedReg": "2011-09-08", 
    "description": "This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the dominant choice-modelling paradigm based on Random Utility Maximization-theory (RUM-theory). We highlight how RRM-based models provide closed form, logit-type formulations for choice probabilities that allow for capturing semi-compensatory behaviour and choice set-composition effects while being equally parsimonious as their utilitarian counterparts. Using data from a Stated Choice-experiment aimed at identifying valuations of characteristics of nature parks, we compare RRM-based models and RUM-based models in terms of parameter estimates, goodness of fit, elasticities and consequential policy implications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10640-011-9505-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049212", 
        "issn": [
          "0924-6460", 
          "1573-1502"
        ], 
        "name": "Environmental and Resource Economics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "random regret minimization", 
      "resource economics", 
      "new choice model", 
      "travel demand modelling", 
      "Valuation of characteristics", 
      "discrete choice", 
      "demand modelling", 
      "utilitarian counterpart", 
      "choice model", 
      "choice probabilities", 
      "policy implications", 
      "regret minimization", 
      "economics", 
      "parameter estimates", 
      "goodness of fit", 
      "valuation", 
      "elasticity", 
      "model", 
      "choice", 
      "implications", 
      "estimates", 
      "probability", 
      "closed form", 
      "context", 
      "goodness", 
      "alternative", 
      "modelling", 
      "terms", 
      "data", 
      "counterparts", 
      "behavior", 
      "Park", 
      "fit", 
      "effect", 
      "paradigm", 
      "characteristics", 
      "formulation", 
      "minimization", 
      "form", 
      "Nature Park", 
      "exploration", 
      "field", 
      "paper", 
      "regret-based alternative", 
      "dominant choice-modelling paradigm", 
      "choice-modelling paradigm", 
      "Random Utility Maximization-theory", 
      "Utility Maximization-theory", 
      "Maximization-theory", 
      "RRM-based models", 
      "logit-type formulations", 
      "semi-compensatory behaviour", 
      "choice set-composition effects", 
      "set-composition effects", 
      "Choice-experiment", 
      "RUM-based models", 
      "consequential policy implications"
    ], 
    "name": "Random Regret Minimization: Exploration of a New Choice Model for Environmental and Resource Economics", 
    "pagination": "413-429", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033436435"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10640-011-9505-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10640-011-9505-7", 
      "https://app.dimensions.ai/details/publication/pub.1033436435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10640-011-9505-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10640-011-9505-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10640-011-9505-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10640-011-9505-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10640-011-9505-7'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      22 PREDICATES      92 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10640-011-9505-7 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 anzsrc-for:1403
4 schema:author Nb6a376c3e71e4e4dbbdc07bd3f18f915
5 schema:citation sg:pub.10.1007/bf01065370
6 sg:pub.10.1007/s10640-005-3794-7
7 sg:pub.10.1007/s10640-008-9198-8
8 sg:pub.10.1007/s10640-008-9250-8
9 sg:pub.10.1007/s10640-009-9283-7
10 sg:pub.10.1007/s10640-009-9291-7
11 sg:pub.10.1007/s10640-010-9420-3
12 sg:pub.10.1023/a:1016077425039
13 sg:pub.10.1038/nn1514
14 schema:datePublished 2011-09-08
15 schema:datePublishedReg 2011-09-08
16 schema:description This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the dominant choice-modelling paradigm based on Random Utility Maximization-theory (RUM-theory). We highlight how RRM-based models provide closed form, logit-type formulations for choice probabilities that allow for capturing semi-compensatory behaviour and choice set-composition effects while being equally parsimonious as their utilitarian counterparts. Using data from a Stated Choice-experiment aimed at identifying valuations of characteristics of nature parks, we compare RRM-based models and RUM-based models in terms of parameter estimates, goodness of fit, elasticities and consequential policy implications.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf Nab789b528ce240e78f2feaea456a5773
21 Nbf9ff42d88c64ab0bf17c16e0ea6f8b9
22 sg:journal.1049212
23 schema:keywords Choice-experiment
24 Maximization-theory
25 Nature Park
26 Park
27 RRM-based models
28 RUM-based models
29 Random Utility Maximization-theory
30 Utility Maximization-theory
31 Valuation of characteristics
32 alternative
33 behavior
34 characteristics
35 choice
36 choice model
37 choice probabilities
38 choice set-composition effects
39 choice-modelling paradigm
40 closed form
41 consequential policy implications
42 context
43 counterparts
44 data
45 demand modelling
46 discrete choice
47 dominant choice-modelling paradigm
48 economics
49 effect
50 elasticity
51 estimates
52 exploration
53 field
54 fit
55 form
56 formulation
57 goodness
58 goodness of fit
59 implications
60 logit-type formulations
61 minimization
62 model
63 modelling
64 new choice model
65 paper
66 paradigm
67 parameter estimates
68 policy implications
69 probability
70 random regret minimization
71 regret minimization
72 regret-based alternative
73 resource economics
74 semi-compensatory behaviour
75 set-composition effects
76 terms
77 travel demand modelling
78 utilitarian counterpart
79 valuation
80 schema:name Random Regret Minimization: Exploration of a New Choice Model for Environmental and Resource Economics
81 schema:pagination 413-429
82 schema:productId N0b4542dff0924d5dafc3b4d684b99619
83 Na0c05dd5ce894fc2a9dfe249dec72051
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033436435
85 https://doi.org/10.1007/s10640-011-9505-7
86 schema:sdDatePublished 2021-11-01T18:15
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N11b4253cf44a4024a1bfaa12d1bf0729
89 schema:url https://doi.org/10.1007/s10640-011-9505-7
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N0b4542dff0924d5dafc3b4d684b99619 schema:name dimensions_id
94 schema:value pub.1033436435
95 rdf:type schema:PropertyValue
96 N11b4253cf44a4024a1bfaa12d1bf0729 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N54f207cac01f4f7bbfdee2b1169d7a99 rdf:first sg:person.01074150551.68
99 rdf:rest Nb60a3e46690f49a989d2006e67a72614
100 Na0c05dd5ce894fc2a9dfe249dec72051 schema:name doi
101 schema:value 10.1007/s10640-011-9505-7
102 rdf:type schema:PropertyValue
103 Nab789b528ce240e78f2feaea456a5773 schema:issueNumber 3
104 rdf:type schema:PublicationIssue
105 Nb60a3e46690f49a989d2006e67a72614 rdf:first sg:person.012471233050.65
106 rdf:rest rdf:nil
107 Nb6a376c3e71e4e4dbbdc07bd3f18f915 rdf:first sg:person.015014004730.29
108 rdf:rest N54f207cac01f4f7bbfdee2b1169d7a99
109 Nbf9ff42d88c64ab0bf17c16e0ea6f8b9 schema:volumeNumber 51
110 rdf:type schema:PublicationVolume
111 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
112 schema:name Economics
113 rdf:type schema:DefinedTerm
114 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
115 schema:name Applied Economics
116 rdf:type schema:DefinedTerm
117 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
118 schema:name Econometrics
119 rdf:type schema:DefinedTerm
120 sg:journal.1049212 schema:issn 0924-6460
121 1573-1502
122 schema:name Environmental and Resource Economics
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01074150551.68 schema:affiliation grid-institutes:grid.4777.3
126 schema:familyName Boeri
127 schema:givenName Marco
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074150551.68
129 rdf:type schema:Person
130 sg:person.012471233050.65 schema:affiliation grid-institutes:grid.5292.c
131 schema:familyName Chorus
132 schema:givenName Caspar G.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471233050.65
134 rdf:type schema:Person
135 sg:person.015014004730.29 schema:affiliation grid-institutes:grid.5608.b
136 schema:familyName Thiene
137 schema:givenName Mara
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015014004730.29
139 rdf:type schema:Person
140 sg:pub.10.1007/bf01065370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014856583
141 https://doi.org/10.1007/bf01065370
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10640-005-3794-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042398270
144 https://doi.org/10.1007/s10640-005-3794-7
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10640-008-9198-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006399828
147 https://doi.org/10.1007/s10640-008-9198-8
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10640-008-9250-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024377979
150 https://doi.org/10.1007/s10640-008-9250-8
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10640-009-9283-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019196047
153 https://doi.org/10.1007/s10640-009-9283-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10640-009-9291-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001514715
156 https://doi.org/10.1007/s10640-009-9291-7
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10640-010-9420-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053700873
159 https://doi.org/10.1007/s10640-010-9420-3
160 rdf:type schema:CreativeWork
161 sg:pub.10.1023/a:1016077425039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007649896
162 https://doi.org/10.1023/a:1016077425039
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nn1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014779741
165 https://doi.org/10.1038/nn1514
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.4777.3 schema:alternateName Gibson Institute for Land, Food and the Environment, Queen’s University of Belfast, Belfast, Northern Ireland, UK
168 schema:name Gibson Institute for Land, Food and the Environment, Queen’s University of Belfast, Belfast, Northern Ireland, UK
169 rdf:type schema:Organization
170 grid-institutes:grid.5292.c schema:alternateName Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands
171 schema:name Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands
172 rdf:type schema:Organization
173 grid-institutes:grid.5608.b schema:alternateName Dep. TESAF, University of Padua, Viale dell’Università, 35020, Legnaro, Padua, Italy
174 schema:name Dep. TESAF, University of Padua, Viale dell’Università, 35020, Legnaro, Padua, Italy
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...