Students’ behavior mining in e-learning environment using cognitive processes with information technologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Ahmad Jalal, Maria Mahmood

ABSTRACT

Rapid growth and recent developments in education sector and information technologies have promoted E-learning and collaborative sessions among the learning communities and business incubator centers. Traditional practices are being replaced with webinars (live online classes) E-Quizes (online testing) and video lectures for effective learning and performance evaluation. These E-learning methods use sensors and multimedia tools to contribute in resource sharing, social networking, interactivity and corporate trainings. While, artificial intelligence tools are also being integrated into various industries and organizations for students’ engagement and adaptability towards the digital world. Predicting students’ behaviors and providing intelligent feedbacks is an important parameter in the E-learning domain. To optimize students’ behaviors in virtual environments, we have proposed an idea of embedding cognitive processes into information technologies. This paper presents hybrid spatio-temporal features for student behavior recognition (SBR) system that recognizes student-student behaviors from sequences of digital images. The proposed SBR system segments student silhouettes using neighboring data points observation and extracts co-occurring robust spatio-temporal features having full body and key body points techniques. Then, artificial neural network is used to measure student interactions taken from UT-Interaction and classroom behaviors datasets. Finally a survey is performed to evaluate the effectiveness of video based interactive learning using proposed SBR system. More... »

PAGES

2797-2821

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10639-019-09892-5

DOI

http://dx.doi.org/10.1007/s10639-019-09892-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/13", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Education", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Specialist Studies In Education", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, Air University, E-9, Islamabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.444783.8", 
          "name": [
            "Department of Computer Science and Engineering, Air University, E-9, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jalal", 
        "givenName": "Ahmad", 
        "id": "sg:person.014043774430.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014043774430.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, Air University, E-9, Islamabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.444783.8", 
          "name": [
            "Department of Computer Science and Engineering, Air University, E-9, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahmood", 
        "givenName": "Maria", 
        "id": "sg:person.011005771727.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005771727.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13640-017-0228-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093097749", 
          "https://doi.org/10.1186/s13640-017-0228-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10639-018-9820-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107318019", 
          "https://doi.org/10.1007/s10639-018-9820-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10639-017-9667-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099698818", 
          "https://doi.org/10.1007/s10639-017-9667-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72588-6_91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012354854", 
          "https://doi.org/10.1007/978-3-540-72588-6_91"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "Rapid growth and recent developments in education sector and information technologies have promoted E-learning and collaborative sessions among the learning communities and business incubator centers. Traditional practices are being replaced with webinars (live online classes) E-Quizes (online testing) and video lectures for effective learning and performance evaluation. These E-learning methods use sensors and multimedia tools to contribute in resource sharing, social networking, interactivity and corporate trainings. While, artificial intelligence tools are also being integrated into various industries and organizations for students\u2019 engagement and adaptability towards the digital world. Predicting students\u2019 behaviors and providing intelligent feedbacks is an important parameter in the E-learning domain. To optimize students\u2019 behaviors in virtual environments, we have proposed an idea of embedding cognitive processes into information technologies. This paper presents hybrid spatio-temporal features for student behavior recognition (SBR) system that recognizes student-student behaviors from sequences of digital images. The proposed SBR system segments student silhouettes using neighboring data points observation and extracts co-occurring robust spatio-temporal features having full body and key body points techniques. Then, artificial neural network is used to measure student interactions taken from UT-Interaction and classroom behaviors datasets. Finally a survey is performed to evaluate the effectiveness of video based interactive learning using proposed SBR system.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10639-019-09892-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136394", 
        "issn": [
          "1360-2357", 
          "1573-7608"
        ], 
        "name": "Education and Information Technologies", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "spatio-temporal features", 
      "information technology", 
      "behavior recognition system", 
      "artificial intelligence tools", 
      "business incubator center", 
      "effectiveness of video", 
      "artificial neural network", 
      "learning community", 
      "student interaction", 
      "education sector", 
      "student behavior", 
      "effective learning", 
      "video lectures", 
      "interactive learning", 
      "behavior mining", 
      "corporate training", 
      "multimedia tools", 
      "intelligence tools", 
      "UT-Interaction", 
      "intelligent feedback", 
      "resource sharing", 
      "virtual environment", 
      "recognition system", 
      "collaborative sessions", 
      "neural network", 
      "behavior dataset", 
      "digital world", 
      "digital images", 
      "students", 
      "social networking", 
      "learning", 
      "incubator centers", 
      "cognitive processes", 
      "performance evaluation", 
      "full body", 
      "key bodies", 
      "traditional practices", 
      "technology", 
      "rapid growth", 
      "quizzes", 
      "lectures", 
      "networking", 
      "video", 
      "mining", 
      "engagement", 
      "interactivity", 
      "environment", 
      "sharing", 
      "dataset", 
      "tool", 
      "training", 
      "network", 
      "silhouette", 
      "feedback", 
      "practice", 
      "system", 
      "features", 
      "images", 
      "adaptability", 
      "sessions", 
      "sensors", 
      "idea", 
      "community", 
      "survey", 
      "recent developments", 
      "effectiveness", 
      "world", 
      "domain", 
      "process", 
      "technique", 
      "development", 
      "organization", 
      "sector", 
      "industry", 
      "point observations", 
      "method", 
      "evaluation", 
      "behavior", 
      "important parameters", 
      "body", 
      "paper", 
      "sequence", 
      "observations", 
      "parameters", 
      "center", 
      "interaction", 
      "growth", 
      "SBR system", 
      "webinars (live online classes) E", 
      "hybrid spatio-temporal features", 
      "student behavior recognition (SBR) system", 
      "student-student behaviors", 
      "SBR system segments student silhouettes", 
      "system segments student silhouettes", 
      "segments student silhouettes", 
      "student silhouettes", 
      "data points observation", 
      "extracts co-occurring robust spatio-temporal features", 
      "co-occurring robust spatio-temporal features", 
      "robust spatio-temporal features", 
      "classroom behaviors datasets"
    ], 
    "name": "Students\u2019 behavior mining in e-learning environment using cognitive processes with information technologies", 
    "pagination": "2797-2821", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10639-019-09892-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10639-019-09892-5", 
      "https://app.dimensions.ai/details/publication/pub.1112731728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_829.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10639-019-09892-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10639-019-09892-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10639-019-09892-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10639-019-09892-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10639-019-09892-5'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      133 URIs      118 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10639-019-09892-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 anzsrc-for:13
5 anzsrc-for:1303
6 schema:author N066e92ba73cc449cb53a568cf0aa85a4
7 schema:citation sg:pub.10.1007/978-3-540-72588-6_91
8 sg:pub.10.1007/s10639-017-9667-1
9 sg:pub.10.1007/s10639-018-9820-5
10 sg:pub.10.1186/s13640-017-0228-8
11 schema:datePublished 2019-03-13
12 schema:datePublishedReg 2019-03-13
13 schema:description Rapid growth and recent developments in education sector and information technologies have promoted E-learning and collaborative sessions among the learning communities and business incubator centers. Traditional practices are being replaced with webinars (live online classes) E-Quizes (online testing) and video lectures for effective learning and performance evaluation. These E-learning methods use sensors and multimedia tools to contribute in resource sharing, social networking, interactivity and corporate trainings. While, artificial intelligence tools are also being integrated into various industries and organizations for students’ engagement and adaptability towards the digital world. Predicting students’ behaviors and providing intelligent feedbacks is an important parameter in the E-learning domain. To optimize students’ behaviors in virtual environments, we have proposed an idea of embedding cognitive processes into information technologies. This paper presents hybrid spatio-temporal features for student behavior recognition (SBR) system that recognizes student-student behaviors from sequences of digital images. The proposed SBR system segments student silhouettes using neighboring data points observation and extracts co-occurring robust spatio-temporal features having full body and key body points techniques. Then, artificial neural network is used to measure student interactions taken from UT-Interaction and classroom behaviors datasets. Finally a survey is performed to evaluate the effectiveness of video based interactive learning using proposed SBR system.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nba31ada0fcf344c5b1d926373b617cf2
18 Nda5a93968a47403c828c797933f416ed
19 sg:journal.1136394
20 schema:keywords SBR system
21 SBR system segments student silhouettes
22 UT-Interaction
23 adaptability
24 artificial intelligence tools
25 artificial neural network
26 behavior
27 behavior dataset
28 behavior mining
29 behavior recognition system
30 body
31 business incubator center
32 center
33 classroom behaviors datasets
34 co-occurring robust spatio-temporal features
35 cognitive processes
36 collaborative sessions
37 community
38 corporate training
39 data points observation
40 dataset
41 development
42 digital images
43 digital world
44 domain
45 education sector
46 effective learning
47 effectiveness
48 effectiveness of video
49 engagement
50 environment
51 evaluation
52 extracts co-occurring robust spatio-temporal features
53 features
54 feedback
55 full body
56 growth
57 hybrid spatio-temporal features
58 idea
59 images
60 important parameters
61 incubator centers
62 industry
63 information technology
64 intelligence tools
65 intelligent feedback
66 interaction
67 interactive learning
68 interactivity
69 key bodies
70 learning
71 learning community
72 lectures
73 method
74 mining
75 multimedia tools
76 network
77 networking
78 neural network
79 observations
80 organization
81 paper
82 parameters
83 performance evaluation
84 point observations
85 practice
86 process
87 quizzes
88 rapid growth
89 recent developments
90 recognition system
91 resource sharing
92 robust spatio-temporal features
93 sector
94 segments student silhouettes
95 sensors
96 sequence
97 sessions
98 sharing
99 silhouette
100 social networking
101 spatio-temporal features
102 student behavior
103 student behavior recognition (SBR) system
104 student interaction
105 student silhouettes
106 student-student behaviors
107 students
108 survey
109 system
110 system segments student silhouettes
111 technique
112 technology
113 tool
114 traditional practices
115 training
116 video
117 video lectures
118 virtual environment
119 webinars (live online classes) E
120 world
121 schema:name Students’ behavior mining in e-learning environment using cognitive processes with information technologies
122 schema:pagination 2797-2821
123 schema:productId N4234ab7962734c8aa339154e2fab2aaf
124 Nb3e8ca92ebea4b92a221c8204894aabd
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731728
126 https://doi.org/10.1007/s10639-019-09892-5
127 schema:sdDatePublished 2021-12-01T19:45
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher Nf126089e34c4478c88f26c48a779ab80
130 schema:url https://doi.org/10.1007/s10639-019-09892-5
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N066e92ba73cc449cb53a568cf0aa85a4 rdf:first sg:person.014043774430.90
135 rdf:rest Nbaa03066a90a4e8fae06d042cffb7546
136 N4234ab7962734c8aa339154e2fab2aaf schema:name doi
137 schema:value 10.1007/s10639-019-09892-5
138 rdf:type schema:PropertyValue
139 Nb3e8ca92ebea4b92a221c8204894aabd schema:name dimensions_id
140 schema:value pub.1112731728
141 rdf:type schema:PropertyValue
142 Nba31ada0fcf344c5b1d926373b617cf2 schema:issueNumber 5
143 rdf:type schema:PublicationIssue
144 Nbaa03066a90a4e8fae06d042cffb7546 rdf:first sg:person.011005771727.10
145 rdf:rest rdf:nil
146 Nda5a93968a47403c828c797933f416ed schema:volumeNumber 24
147 rdf:type schema:PublicationVolume
148 Nf126089e34c4478c88f26c48a779ab80 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
157 schema:name Information Systems
158 rdf:type schema:DefinedTerm
159 anzsrc-for:13 schema:inDefinedTermSet anzsrc-for:
160 schema:name Education
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1303 schema:inDefinedTermSet anzsrc-for:
163 schema:name Specialist Studies In Education
164 rdf:type schema:DefinedTerm
165 sg:journal.1136394 schema:issn 1360-2357
166 1573-7608
167 schema:name Education and Information Technologies
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.011005771727.10 schema:affiliation grid-institutes:grid.444783.8
171 schema:familyName Mahmood
172 schema:givenName Maria
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005771727.10
174 rdf:type schema:Person
175 sg:person.014043774430.90 schema:affiliation grid-institutes:grid.444783.8
176 schema:familyName Jalal
177 schema:givenName Ahmad
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014043774430.90
179 rdf:type schema:Person
180 sg:pub.10.1007/978-3-540-72588-6_91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012354854
181 https://doi.org/10.1007/978-3-540-72588-6_91
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10639-017-9667-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099698818
184 https://doi.org/10.1007/s10639-017-9667-1
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10639-018-9820-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107318019
187 https://doi.org/10.1007/s10639-018-9820-5
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/s13640-017-0228-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093097749
190 https://doi.org/10.1186/s13640-017-0228-8
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.444783.8 schema:alternateName Department of Computer Science and Engineering, Air University, E-9, Islamabad, Pakistan
193 schema:name Department of Computer Science and Engineering, Air University, E-9, Islamabad, Pakistan
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...