Self-orthogonal codes over a non-unital ring and combinatorial matrices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-28

AUTHORS

Minjia Shi, Shukai Wang, Jon-Lark Kim, Patrick Solé

ABSTRACT

There is a local ring E of order 4, without identity for the multiplication, defined by generators and relations as E=⟨a,b∣2a=2b=0,a2=a,b2=b,ab=a,ba=b⟩.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle .$$\end{document} We study a special construction of self-orthogonal codes over E, based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E, and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4.$$\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E. More... »

PAGES

1-13

References to SciGraph publications

  • 2021-07-27. DNA codes over two noncommutative rings of order four in JOURNAL OF APPLIED MATHEMATICS AND COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7

    DOI

    http://dx.doi.org/10.1007/s10623-021-00948-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142240254


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, 230601, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Shukai", 
            "id": "sg:person.016326742634.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Sogang University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.263736.5", 
              "name": [
                "Department of Mathematics, Sogang University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Jon-Lark", 
            "id": "sg:person.010354657646.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354657646.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France", 
              "id": "http://www.grid.ac/institutes/grid.473594.8", 
              "name": [
                "Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Patrick", 
            "id": "sg:person.012750235663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12190-021-01598-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139983258", 
              "https://doi.org/10.1007/s12190-021-01598-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-28", 
        "datePublishedReg": "2021-10-28", 
        "description": "There is a local ring E of order 4,\u00a0 without identity for the multiplication, defined by generators and relations as E=\u27e8a,b\u22232a=2b=0,a2=a,b2=b,ab=a,ba=b\u27e9.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E=\\langle a,b \\mid 2a=2b=0,\\, a^2=a,\\, b^2=b,\\,ab=a,\\, ba=b\\rangle .$$\\end{document} We study a special construction of self-orthogonal codes over E,\u00a0 based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E,\u00a0 and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_4.$$\\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10623-021-00948-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8306127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "Strongly Regular Graphs", 
          "self-orthogonal codes", 
          "self-dual codes", 
          "classical invariant theory", 
          "combinatorial matrices", 
          "self-dual additive codes", 
          "non-unital ring", 
          "invariant theory", 
          "class of codes", 
          "regular graphs", 
          "association scheme", 
          "additive codes", 
          "order 4", 
          "weight enumerators", 
          "Hamming weight", 
          "regular tournaments", 
          "minimum distance", 
          "special construction", 
          "matrix", 
          "graph", 
          "code", 
          "theory", 
          "scheme", 
          "enumerators", 
          "class", 
          "multiplication", 
          "codewords", 
          "generator", 
          "construction", 
          "distance", 
          "tournament", 
          "ring E", 
          "relation", 
          "ring", 
          "Ba", 
          "F4", 
          "weight", 
          "Ab", 
          "B2", 
          "identity", 
          "local ring E", 
          "two-class association schemes", 
          "quasi self-dual codes", 
          "Type IV codes", 
          "IV codes"
        ], 
        "name": "Self-orthogonal codes over a non-unital ring and combinatorial matrices", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142240254"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-021-00948-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-021-00948-7", 
          "https://app.dimensions.ai/details/publication/pub.1142240254"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_881.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10623-021-00948-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      22 PREDICATES      69 URIs      60 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-021-00948-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6bde1726c3544031b8e84b05e1aca971
    4 schema:citation sg:pub.10.1007/s12190-021-01598-7
    5 schema:datePublished 2021-10-28
    6 schema:datePublishedReg 2021-10-28
    7 schema:description There is a local ring E of order 4,  without identity for the multiplication, defined by generators and relations as E=⟨a,b∣2a=2b=0,a2=a,b2=b,ab=a,ba=b⟩.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle .$$\end{document} We study a special construction of self-orthogonal codes over E,  based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E,  and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4.$$\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf sg:journal.1136552
    12 schema:keywords Ab
    13 B2
    14 Ba
    15 F4
    16 Hamming weight
    17 IV codes
    18 Strongly Regular Graphs
    19 Type IV codes
    20 additive codes
    21 association scheme
    22 class
    23 class of codes
    24 classical invariant theory
    25 code
    26 codewords
    27 combinatorial matrices
    28 construction
    29 distance
    30 enumerators
    31 generator
    32 graph
    33 identity
    34 invariant theory
    35 local ring E
    36 matrix
    37 minimum distance
    38 multiplication
    39 non-unital ring
    40 order 4
    41 quasi self-dual codes
    42 regular graphs
    43 regular tournaments
    44 relation
    45 ring
    46 ring E
    47 scheme
    48 self-dual additive codes
    49 self-dual codes
    50 self-orthogonal codes
    51 special construction
    52 theory
    53 tournament
    54 two-class association schemes
    55 weight
    56 weight enumerators
    57 schema:name Self-orthogonal codes over a non-unital ring and combinatorial matrices
    58 schema:pagination 1-13
    59 schema:productId N0c73bac49dd543f0821a92678c9a429e
    60 N8d1d206c28e941e187605bde4089eb1a
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142240254
    62 https://doi.org/10.1007/s10623-021-00948-7
    63 schema:sdDatePublished 2022-01-01T19:00
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nb013f79d93b64d0d8809c2cc2bccde72
    66 schema:url https://doi.org/10.1007/s10623-021-00948-7
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N0af5c3c7f0294fc39043fd525c9f6d69 rdf:first sg:person.016326742634.42
    71 rdf:rest N2a88915532f5438bb121437b603ce505
    72 N0c73bac49dd543f0821a92678c9a429e schema:name doi
    73 schema:value 10.1007/s10623-021-00948-7
    74 rdf:type schema:PropertyValue
    75 N14a83779a9f940e7a297b2452da1affa rdf:first sg:person.012750235663.02
    76 rdf:rest rdf:nil
    77 N2a88915532f5438bb121437b603ce505 rdf:first sg:person.010354657646.00
    78 rdf:rest N14a83779a9f940e7a297b2452da1affa
    79 N6bde1726c3544031b8e84b05e1aca971 rdf:first sg:person.012012432235.16
    80 rdf:rest N0af5c3c7f0294fc39043fd525c9f6d69
    81 N8d1d206c28e941e187605bde4089eb1a schema:name dimensions_id
    82 schema:value pub.1142240254
    83 rdf:type schema:PropertyValue
    84 Nb013f79d93b64d0d8809c2cc2bccde72 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Pure Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s10623-021-00948-7
    93 rdf:type schema:MonetaryGrant
    94 sg:journal.1136552 schema:issn 0925-1022
    95 1573-7586
    96 schema:name Designs, Codes and Cryptography
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.010354657646.00 schema:affiliation grid-institutes:grid.263736.5
    100 schema:familyName Kim
    101 schema:givenName Jon-Lark
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354657646.00
    103 rdf:type schema:Person
    104 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    105 schema:familyName Shi
    106 schema:givenName Minjia
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    108 rdf:type schema:Person
    109 sg:person.012750235663.02 schema:affiliation grid-institutes:grid.473594.8
    110 schema:familyName Solé
    111 schema:givenName Patrick
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
    113 rdf:type schema:Person
    114 sg:person.016326742634.42 schema:affiliation grid-institutes:grid.252245.6
    115 schema:familyName Wang
    116 schema:givenName Shukai
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42
    118 rdf:type schema:Person
    119 sg:pub.10.1007/s12190-021-01598-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139983258
    120 https://doi.org/10.1007/s12190-021-01598-7
    121 rdf:type schema:CreativeWork
    122 grid-institutes:grid.252245.6 schema:alternateName Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    123 School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    124 schema:name Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    125 School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    126 rdf:type schema:Organization
    127 grid-institutes:grid.263736.5 schema:alternateName Department of Mathematics, Sogang University, Seoul, South Korea
    128 schema:name Department of Mathematics, Sogang University, Seoul, South Korea
    129 rdf:type schema:Organization
    130 grid-institutes:grid.473594.8 schema:alternateName Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France
    131 schema:name Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...