# Self-orthogonal codes over a non-unital ring and combinatorial matrices

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2021-10-28

AUTHORS ABSTRACT

There is a local ring E of order 4, without identity for the multiplication, defined by generators and relations as E=⟨a,b∣2a=2b=0,a2=a,b2=b,ab=a,ba=b⟩.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle .$$\end{document} We study a special construction of self-orthogonal codes over E, based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E, and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4.$$\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E. More... »

PAGES

1-13

### References to SciGraph publications

• 2021-07-27. DNA codes over two noncommutative rings of order four in JOURNAL OF APPLIED MATHEMATICS AND COMPUTING
• ### Journal

TITLE

Designs, Codes and Cryptography

ISSUE

N/A

VOLUME

N/A

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7

DOI

http://dx.doi.org/10.1007/s10623-021-00948-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142240254

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
],
"type": "Organization"
},
"familyName": "Shi",
"givenName": "Minjia",
"id": "sg:person.012012432235.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematical Sciences, Anhui University, 230601, Hefei, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Shukai",
"id": "sg:person.016326742634.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Sogang University, Seoul, South Korea",
"id": "http://www.grid.ac/institutes/grid.263736.5",
"name": [
"Department of Mathematics, Sogang University, Seoul, South Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Jon-Lark",
"id": "sg:person.010354657646.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354657646.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France",
"id": "http://www.grid.ac/institutes/grid.473594.8",
"name": [
"Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France"
],
"type": "Organization"
},
"familyName": "Sol\u00e9",
"givenName": "Patrick",
"id": "sg:person.012750235663.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s12190-021-01598-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1139983258",
"https://doi.org/10.1007/s12190-021-01598-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-28",
"datePublishedReg": "2021-10-28",
"description": "There is a local ring E of order 4,\u00a0 without identity for the multiplication, defined by generators and relations as E=\u27e8a,b\u22232a=2b=0,a2=a,b2=b,ab=a,ba=b\u27e9.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E=\\langle a,b \\mid 2a=2b=0,\\, a^2=a,\\, b^2=b,\\,ab=a,\\, ba=b\\rangle .$$\\end{document} We study a special construction of self-orthogonal codes over E,\u00a0 based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E,\u00a0 and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_4.$$\\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E.",
"genre": "article",
"id": "sg:pub.10.1007/s10623-021-00948-7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8306127",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136552",
"issn": [
"0925-1022",
"1573-7586"
],
"name": "Designs, Codes and Cryptography",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"Strongly Regular Graphs",
"self-orthogonal codes",
"self-dual codes",
"classical invariant theory",
"combinatorial matrices",
"non-unital ring",
"invariant theory",
"class of codes",
"regular graphs",
"association scheme",
"order 4",
"weight enumerators",
"Hamming weight",
"regular tournaments",
"minimum distance",
"special construction",
"matrix",
"graph",
"code",
"theory",
"scheme",
"enumerators",
"class",
"multiplication",
"codewords",
"generator",
"construction",
"distance",
"tournament",
"ring E",
"relation",
"ring",
"Ba",
"F4",
"weight",
"Ab",
"B2",
"identity",
"local ring E",
"two-class association schemes",
"quasi self-dual codes",
"Type IV codes",
"IV codes"
],
"name": "Self-orthogonal codes over a non-unital ring and combinatorial matrices",
"pagination": "1-13",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142240254"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10623-021-00948-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10623-021-00948-7",
"https://app.dimensions.ai/details/publication/pub.1142240254"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T19:00",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_881.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10623-021-00948-7"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00948-7'

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      69 URIs      60 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10623-021-00948-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6bde1726c3544031b8e84b05e1aca971
4 schema:citation sg:pub.10.1007/s12190-021-01598-7
5 schema:datePublished 2021-10-28
6 schema:datePublishedReg 2021-10-28
7 schema:description There is a local ring E of order 4,  without identity for the multiplication, defined by generators and relations as E=⟨a,b∣2a=2b=0,a2=a,b2=b,ab=a,ba=b⟩.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle .$$\end{document} We study a special construction of self-orthogonal codes over E,  based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E,  and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4.$$\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf sg:journal.1136552
12 schema:keywords Ab
13 B2
14 Ba
15 F4
16 Hamming weight
17 IV codes
18 Strongly Regular Graphs
19 Type IV codes
21 association scheme
22 class
23 class of codes
24 classical invariant theory
25 code
26 codewords
27 combinatorial matrices
28 construction
29 distance
30 enumerators
31 generator
32 graph
33 identity
34 invariant theory
35 local ring E
36 matrix
37 minimum distance
38 multiplication
39 non-unital ring
40 order 4
41 quasi self-dual codes
42 regular graphs
43 regular tournaments
44 relation
45 ring
46 ring E
47 scheme
48 self-dual additive codes
49 self-dual codes
50 self-orthogonal codes
51 special construction
52 theory
53 tournament
54 two-class association schemes
55 weight
56 weight enumerators
57 schema:name Self-orthogonal codes over a non-unital ring and combinatorial matrices
58 schema:pagination 1-13
59 schema:productId N0c73bac49dd543f0821a92678c9a429e
60 N8d1d206c28e941e187605bde4089eb1a
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142240254
62 https://doi.org/10.1007/s10623-021-00948-7
63 schema:sdDatePublished 2022-01-01T19:00
65 schema:sdPublisher Nb013f79d93b64d0d8809c2cc2bccde72
66 schema:url https://doi.org/10.1007/s10623-021-00948-7
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0af5c3c7f0294fc39043fd525c9f6d69 rdf:first sg:person.016326742634.42
71 rdf:rest N2a88915532f5438bb121437b603ce505
72 N0c73bac49dd543f0821a92678c9a429e schema:name doi
73 schema:value 10.1007/s10623-021-00948-7
74 rdf:type schema:PropertyValue
75 N14a83779a9f940e7a297b2452da1affa rdf:first sg:person.012750235663.02
76 rdf:rest rdf:nil
77 N2a88915532f5438bb121437b603ce505 rdf:first sg:person.010354657646.00
78 rdf:rest N14a83779a9f940e7a297b2452da1affa
79 N6bde1726c3544031b8e84b05e1aca971 rdf:first sg:person.012012432235.16
80 rdf:rest N0af5c3c7f0294fc39043fd525c9f6d69
81 N8d1d206c28e941e187605bde4089eb1a schema:name dimensions_id
82 schema:value pub.1142240254
83 rdf:type schema:PropertyValue
84 Nb013f79d93b64d0d8809c2cc2bccde72 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s10623-021-00948-7
93 rdf:type schema:MonetaryGrant
94 sg:journal.1136552 schema:issn 0925-1022
95 1573-7586
96 schema:name Designs, Codes and Cryptography
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.010354657646.00 schema:affiliation grid-institutes:grid.263736.5
100 schema:familyName Kim
101 schema:givenName Jon-Lark
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354657646.00
103 rdf:type schema:Person
104 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
105 schema:familyName Shi
106 schema:givenName Minjia
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
108 rdf:type schema:Person
109 sg:person.012750235663.02 schema:affiliation grid-institutes:grid.473594.8
110 schema:familyName Solé
111 schema:givenName Patrick
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
113 rdf:type schema:Person
114 sg:person.016326742634.42 schema:affiliation grid-institutes:grid.252245.6
115 schema:familyName Wang
116 schema:givenName Shukai
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42
118 rdf:type schema:Person
119 sg:pub.10.1007/s12190-021-01598-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139983258
120 https://doi.org/10.1007/s12190-021-01598-7
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.252245.6 schema:alternateName Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
123 School of Mathematical Sciences, Anhui University, 230601, Hefei, China
124 schema:name Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
125 School of Mathematical Sciences, Anhui University, 230601, Hefei, China
126 rdf:type schema:Organization
127 grid-institutes:grid.263736.5 schema:alternateName Department of Mathematics, Sogang University, Seoul, South Korea
128 schema:name Department of Mathematics, Sogang University, Seoul, South Korea
129 rdf:type schema:Organization
130 grid-institutes:grid.473594.8 schema:alternateName Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France
131 schema:name Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France
132 rdf:type schema:Organization

Preview window. Press ESC to close (or click here)

...