2021-10-29
AUTHORSMinjia Shi, Shukai Wang, Xiaoxiao Li
ABSTRACTA code C is called ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_p\mathbb {Z}_{p^2}$$\end{document}-linear if it is the Gray image of a ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_p\mathbb {Z}_{p^2}$$\end{document}-additive code, where p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document} is prime. In this paper, the rank and the dimension of the kernel of ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_p\mathbb {Z}_{p^2}$$\end{document}-linear codes are studied. The range of their values is given. For each value of the rank of ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_p\mathbb {Z}_{p^2}$$\end{document}-linear codes, we give detailed construction of the corresponding codes. Similarly, for the values of the dimension of the kernel, we also give a construction method. Finally, pairs of rank and the dimension of the kernel of ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_p\mathbb {Z}_{p^2}$$\end{document}-additive codes are also considered. More... »
PAGES1-14
http://scigraph.springernature.com/pub.10.1007/s10623-021-00947-8
DOIhttp://dx.doi.org/10.1007/s10623-021-00947-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142259486
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Shi",
"givenName": "Minjia",
"id": "sg:person.012012432235.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Shukai",
"id": "sg:person.016326742634.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Xiaoxiao",
"id": "sg:person.015005637573.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005637573.84"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s12095-019-00397-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120486368",
"https://doi.org/10.1007/s12095-019-00397-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-87448-5_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029639965",
"https://doi.org/10.1007/978-3-540-87448-5_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-017-0401-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090992013",
"https://doi.org/10.1007/s10623-017-0401-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12095-019-00391-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120333610",
"https://doi.org/10.1007/s12095-019-00391-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-010-9437-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050823099",
"https://doi.org/10.1007/s10623-010-9437-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-014-9946-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008179008",
"https://doi.org/10.1007/s10623-014-9946-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-009-9316-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046644094",
"https://doi.org/10.1007/s10623-009-9316-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-009-9340-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004047479",
"https://doi.org/10.1007/s10623-009-9340-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-016-0323-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044948692",
"https://doi.org/10.1007/s10623-016-0323-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00200-015-0273-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006650219",
"https://doi.org/10.1007/s00200-015-0273-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-29",
"datePublishedReg": "2021-10-29",
"description": "A code C is called ZpZp2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {Z}_p\\mathbb {Z}_{p^2}$$\\end{document}-linear if it is the Gray image of a ZpZp2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {Z}_p\\mathbb {Z}_{p^2}$$\\end{document}-additive code, where p>2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p>2$$\\end{document} is prime. In this paper, the rank and the dimension of the kernel of ZpZp2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {Z}_p\\mathbb {Z}_{p^2}$$\\end{document}-linear codes are studied. The range of their values is given. For each value of the rank of ZpZp2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {Z}_p\\mathbb {Z}_{p^2}$$\\end{document}-linear codes, we give detailed construction of the corresponding codes. Similarly, for the values of the dimension of the kernel, we also give a construction method. Finally, pairs of rank and the dimension of the kernel of ZpZp2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {Z}_p\\mathbb {Z}_{p^2}$$\\end{document}-additive codes are also considered.",
"genre": "article",
"id": "sg:pub.10.1007/s10623-021-00947-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.8306127",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136552",
"issn": [
"0925-1022",
"1573-7586"
],
"name": "Designs, Codes and Cryptography",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"additive codes",
"linear codes",
"code C",
"rank",
"kernel",
"detailed construction",
"construction",
"corresponding code",
"images",
"code",
"dimensions",
"construction method",
"gray image",
"paper",
"range",
"values",
"pairs",
"method",
"pairs of ranks"
],
"name": "ZpZp2-linear codes: rank and kernel",
"pagination": "1-14",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142259486"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10623-021-00947-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10623-021-00947-8",
"https://app.dimensions.ai/details/publication/pub.1142259486"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_887.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10623-021-00947-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00947-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00947-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00947-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-021-00947-8'
This table displays all metadata directly associated to this object as RDF triples.
139 TRIPLES
22 PREDICATES
55 URIs
34 LITERALS
4 BLANK NODES