On the number of resolvable Steiner triple systems of small 3-rank View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-04

AUTHORS

Minjia Shi, Li Xu, Denis S. Krotov

ABSTRACT

In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order v, where v=3k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=3^k$$\end{document}, and 3-rank v-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-k$$\end{document}. We develop an approach to generalize this bound and estimate the number of isomorphism classes of resolvable STS (v) of 3-rank v-k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-k-1$$\end{document} for an arbitrary v of form 3kT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^kT$$\end{document}, where T is congruent to 1 or 3 modulo 6. More... »

PAGES

1037-1046

References to SciGraph publications

  • 2017-09-02. On Bonisoli’s theorem and the block codes of Steiner triple systems in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2018-06-15. The classification of Steiner triple systems on 27 points with 3-rank 24 in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1978-10. Ranks of incidence matrices of Steiner triple systems in MATHEMATISCHE ZEITSCHRIFT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-020-00725-y

    DOI

    http://dx.doi.org/10.1007/s10623-020-00725-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124588179


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Li", 
            "id": "sg:person.014463040757.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463040757.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.426295.e", 
              "name": [
                "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krotov", 
            "givenName": "Denis S.", 
            "id": "sg:person.013674271021.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10623-017-0406-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091424654", 
              "https://doi.org/10.1007/s10623-017-0406-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-018-0502-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104646273", 
              "https://doi.org/10.1007/s10623-018-0502-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01174898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042478746", 
              "https://doi.org/10.1007/bf01174898"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-02-04", 
        "datePublishedReg": "2020-02-04", 
        "description": "In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order v, where v=3k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$v=3^k$$\\end{document}, and 3-rank v-k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$v-k$$\\end{document}. We develop an approach to generalize this bound and estimate the number of isomorphism classes of resolvable STS (v) of 3-rank v-k-1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$v-k-1$$\\end{document} for an arbitrary v of form 3kT\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3^kT$$\\end{document}, where T is congruent to 1 or 3 modulo 6.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10623-020-00725-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8306127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "88"
          }
        ], 
        "keywords": [
          "Steiner triple systems", 
          "triple systems", 
          "isomorphism classes", 
          "modulo 6", 
          "order v", 
          "Magliveras", 
          "Tonchev", 
          "recent work", 
          "Jungnickel", 
          "number", 
          "system", 
          "class", 
          "approach", 
          "form", 
          "work", 
          "Wassermann", 
          "congruent", 
          "nonisomorphic resolvable Steiner triple systems", 
          "resolvable Steiner triple systems"
        ], 
        "name": "On the number of resolvable Steiner triple systems of small 3-rank", 
        "pagination": "1037-1046", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124588179"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-020-00725-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-020-00725-y", 
          "https://app.dimensions.ai/details/publication/pub.1124588179"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_872.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10623-020-00725-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-020-00725-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-020-00725-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-020-00725-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-020-00725-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      22 PREDICATES      47 URIs      36 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-020-00725-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb471fac9a43b4b5fb519b716c9704026
    4 schema:citation sg:pub.10.1007/bf01174898
    5 sg:pub.10.1007/s10623-017-0406-9
    6 sg:pub.10.1007/s10623-018-0502-5
    7 schema:datePublished 2020-02-04
    8 schema:datePublishedReg 2020-02-04
    9 schema:description In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order v, where v=3k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=3^k$$\end{document}, and 3-rank v-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-k$$\end{document}. We develop an approach to generalize this bound and estimate the number of isomorphism classes of resolvable STS (v) of 3-rank v-k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-k-1$$\end{document} for an arbitrary v of form 3kT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^kT$$\end{document}, where T is congruent to 1 or 3 modulo 6.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N26f1ef72a1584381ad4264134b56d0c7
    14 N76fe1ac543ad4a3a97cfbab5ea3d23db
    15 sg:journal.1136552
    16 schema:keywords Jungnickel
    17 Magliveras
    18 Steiner triple systems
    19 Tonchev
    20 Wassermann
    21 approach
    22 class
    23 congruent
    24 form
    25 isomorphism classes
    26 modulo 6
    27 nonisomorphic resolvable Steiner triple systems
    28 number
    29 order v
    30 recent work
    31 resolvable Steiner triple systems
    32 system
    33 triple systems
    34 work
    35 schema:name On the number of resolvable Steiner triple systems of small 3-rank
    36 schema:pagination 1037-1046
    37 schema:productId N076a27582d7f4eada51d7d35d77e26c5
    38 Nc390a3589fda4360884b8f772053977d
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124588179
    40 https://doi.org/10.1007/s10623-020-00725-y
    41 schema:sdDatePublished 2022-01-01T18:55
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Na500a6c42e024bf3942d2cb470165ffd
    44 schema:url https://doi.org/10.1007/s10623-020-00725-y
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N076a27582d7f4eada51d7d35d77e26c5 schema:name doi
    49 schema:value 10.1007/s10623-020-00725-y
    50 rdf:type schema:PropertyValue
    51 N26f1ef72a1584381ad4264134b56d0c7 schema:volumeNumber 88
    52 rdf:type schema:PublicationVolume
    53 N76fe1ac543ad4a3a97cfbab5ea3d23db schema:issueNumber 6
    54 rdf:type schema:PublicationIssue
    55 Na500a6c42e024bf3942d2cb470165ffd schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Nb471fac9a43b4b5fb519b716c9704026 rdf:first sg:person.012012432235.16
    58 rdf:rest Nfa126f857bfb491e98cbc5aa50033c56
    59 Nc390a3589fda4360884b8f772053977d schema:name dimensions_id
    60 schema:value pub.1124588179
    61 rdf:type schema:PropertyValue
    62 Nc85862911808420ab52e49e40b6fe773 rdf:first sg:person.013674271021.75
    63 rdf:rest rdf:nil
    64 Nfa126f857bfb491e98cbc5aa50033c56 rdf:first sg:person.014463040757.81
    65 rdf:rest Nc85862911808420ab52e49e40b6fe773
    66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Information and Computing Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Artificial Intelligence and Image Processing
    71 rdf:type schema:DefinedTerm
    72 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s10623-020-00725-y
    73 rdf:type schema:MonetaryGrant
    74 sg:journal.1136552 schema:issn 0925-1022
    75 1573-7586
    76 schema:name Designs, Codes and Cryptography
    77 schema:publisher Springer Nature
    78 rdf:type schema:Periodical
    79 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    80 schema:familyName Shi
    81 schema:givenName Minjia
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    83 rdf:type schema:Person
    84 sg:person.013674271021.75 schema:affiliation grid-institutes:grid.426295.e
    85 schema:familyName Krotov
    86 schema:givenName Denis S.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75
    88 rdf:type schema:Person
    89 sg:person.014463040757.81 schema:affiliation grid-institutes:grid.252245.6
    90 schema:familyName Xu
    91 schema:givenName Li
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463040757.81
    93 rdf:type schema:Person
    94 sg:pub.10.1007/bf01174898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042478746
    95 https://doi.org/10.1007/bf01174898
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s10623-017-0406-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091424654
    98 https://doi.org/10.1007/s10623-017-0406-9
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10623-018-0502-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104646273
    101 https://doi.org/10.1007/s10623-018-0502-5
    102 rdf:type schema:CreativeWork
    103 grid-institutes:grid.252245.6 schema:alternateName Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    104 School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    105 schema:name Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    106 School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    107 rdf:type schema:Organization
    108 grid-institutes:grid.426295.e schema:alternateName Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    109 schema:name Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...