New cube distinguishers on NFSR-based stream ciphers

Ontology type: schema:ScholarlyArticle

Article Info

DATE

2019-09-11

AUTHORS ABSTRACT

In this paper, we revisit the work of Sarkar et al. (Des Codes Cryptogr 82(1–2):351–375, 2017) and Liu (Advances in cryptology—Crypto 2017, 2017) and show how both of their ideas can be tuned to find good cubes. Here we propose a new algorithm for cube generation which improves existing results on Zero-Sum\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Zero-Sum}}$$\end{document} distinguisher. We apply our new cube finding algorithm to three different nonlinear feedback shift register (NFSR) based stream ciphers Trivium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Trivium}}$$\end{document}, Kreyvium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {Kreyvium}$$\end{document} and ACORN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {ACORN}$$\end{document}. From the results, we can see a cube of size 39, which gives Zero-Sum\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Zero-Sum}}$$\end{document} for maximum 842 rounds and a significant non-randomness up to 850 rounds of Trivium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Trivium}}$$\end{document}. We provide some small size good cubes for Trivium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Trivium}}$$\end{document}, which outperform existing ones. We further investigate Kreyvium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {Kreyvium}$$\end{document} and ACORN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {ACORN}$$\end{document} by a similar technique and obtain cubes of size 56 and 92 which give Zero-Sum\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Zero-Sum}}$$\end{document} distinguisher till 875 and 738 initialization rounds of Kreyvium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {Kreyvium}$$\end{document} and ACORN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {ACORN}$$\end{document} respectively. To the best of our knowledge, these results are best results as compared to the existing results on distinguishing attacks of these ciphers. We also provide a table of good cubes of sizes varying from 10 to 40 for these three ciphers. More... »

PAGES

173-199

References to SciGraph publications

• 2016-07-20. Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression in FAST SOFTWARE ENCRYPTION
• 2009. Cube Attacks on Tweakable Black Box Polynomials in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009
• 2009. Cube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium in FAST SOFTWARE ENCRYPTION
• 2008-01-01. Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2008
• 2018-03-31. Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2018
• 2018-06-13. A New Framework for Finding Nonlinear Superpolies in Cube Attacks Against Trivium-Like Ciphers in INFORMATION SECURITY AND PRIVACY
• 2017-05-31. Conditional Differential Cryptanalysis for Kreyvium in INFORMATION SECURITY AND PRIVACY
• 2017-08-02. Degree Evaluation of NFSR-Based Cryptosystems in ADVANCES IN CRYPTOLOGY – CRYPTO 2017
• 2016-05-02. Observing biases in the state: case studies with Trivium and Trivia-SC in DESIGNS, CODES AND CRYPTOGRAPHY
• 2016-09-27. Investigating Cube Attacks on the Authenticated Encryption Stream Cipher ACORN in APPLICATIONS AND TECHNIQUES IN INFORMATION SECURITY
• 2018-07-24. A Key-Recovery Attack on 855-round Trivium in ADVANCES IN CRYPTOLOGY – CRYPTO 2018
• 2005-07-28. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm in EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING
• 2018-07-25. Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly in ADVANCES IN CRYPTOLOGY – CRYPTO 2018
• 2012. Conditional Differential Cryptanalysis of Trivium and KATAN in SELECTED AREAS IN CRYPTOGRAPHY
• 2010. Greedy Distinguishers and Nonrandomness Detectors in PROGRESS IN CRYPTOLOGY - INDOCRYPT 2010
• 2014-07-08. Improving Key Recovery to 784 and 799 Rounds of Trivium Using Optimized Cube Attacks in FAST SOFTWARE ENCRYPTION
• Journal

TITLE

Designs, Codes and Cryptography

ISSUE

1

VOLUME

88

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-019-00674-1

DOI

http://dx.doi.org/10.1007/s10623-019-00674-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1120970687

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Indian Institute of Technology Madras, Chennai, India",
"id": "http://www.grid.ac/institutes/grid.417969.4",
"name": [
"Indian Institute of Technology Madras, Chennai, India"
],
"type": "Organization"
},
"familyName": "Kesarwani",
"givenName": "Abhishek",
"id": "sg:person.010457144735.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010457144735.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "ERTL(E), STQC, Kolkata, India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"ERTL(E), STQC, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Roy",
"givenName": "Dibyendu",
"id": "sg:person.010456630433.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456630433.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Indian Institute of Technology Madras, Chennai, India",
"id": "http://www.grid.ac/institutes/grid.417969.4",
"name": [
"Indian Institute of Technology Madras, Chennai, India"
],
"type": "Organization"
},
"familyName": "Sarkar",
"givenName": "Santanu",
"id": "sg:person.013316030122.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316030122.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "FHNW, Windisch, Switzerland",
"id": "http://www.grid.ac/institutes/grid.410380.e",
"name": [
"FHNW, Windisch, Switzerland"
],
"type": "Organization"
},
"familyName": "Meier",
"givenName": "Willi",
"id": "sg:person.07653531142.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10623-016-0211-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030419806",
"https://doi.org/10.1007/s10623-016-0211-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-78375-8_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101874793",
"https://doi.org/10.1007/978-3-319-78375-8_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-52993-5_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052565510",
"https://doi.org/10.1007/978-3-662-52993-5_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-63697-9_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091024676",
"https://doi.org/10.1007/978-3-319-63697-9_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-28496-0_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020197941",
"https://doi.org/10.1007/978-3-642-28496-0_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-68164-9_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033624456",
"https://doi.org/10.1007/978-3-540-68164-9_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-03317-9_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041320003",
"https://doi.org/10.1007/978-3-642-03317-9_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96884-1_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105813840",
"https://doi.org/10.1007/978-3-319-96884-1_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-01001-9_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052713322",
"https://doi.org/10.1007/978-3-642-01001-9_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-60055-0_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085709869",
"https://doi.org/10.1007/978-3-319-60055-0_22"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-17401-8_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016256936",
"https://doi.org/10.1007/978-3-642-17401-8_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-43933-3_26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036102667",
"https://doi.org/10.1007/978-3-662-43933-3_26"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1155/asp.2005.1923",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063205527",
"https://doi.org/10.1155/asp.2005.1923"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-981-10-2741-3_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014037800",
"https://doi.org/10.1007/978-981-10-2741-3_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-93638-3_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104575142",
"https://doi.org/10.1007/978-3-319-93638-3_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96881-0_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105780992",
"https://doi.org/10.1007/978-3-319-96881-0_6"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-09-11",
"datePublishedReg": "2019-09-11",
"description": "In this paper, we revisit the work of Sarkar et al. (Des Codes Cryptogr 82(1\u20132):351\u2013375, 2017) and Liu (Advances in cryptology\u2014Crypto 2017, 2017) and show how both of their ideas can be tuned to find good cubes. Here we propose a new algorithm for cube generation which improves existing results on Zero-Sum\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\texttt {Zero-Sum}}$$\\end{document} distinguisher. We apply our new cube finding algorithm to three different nonlinear feedback shift register (NFSR) based stream ciphers Trivium\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\textsf {Trivium}}$$\\end{document}, Kreyvium\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\textsf {Kreyvium}$$\\end{document} and ACORN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\textsf {ACORN}$$\\end{document}. From the results, we can see a cube of size 39, which gives Zero-Sum\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\texttt {Zero-Sum}}$$\\end{document} for maximum 842 rounds and a significant non-randomness up to 850 rounds of Trivium\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\textsf {Trivium}}$$\\end{document}. We provide some small size good cubes for Trivium\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\textsf {Trivium}}$$\\end{document}, which outperform existing ones. We further investigate Kreyvium\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\textsf {Kreyvium}$$\\end{document} and ACORN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\textsf {ACORN}$$\\end{document} by a similar technique and obtain cubes of size 56 and 92 which give Zero-Sum\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\texttt {Zero-Sum}}$$\\end{document} distinguisher till 875 and 738 initialization rounds of Kreyvium\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\textsf {Kreyvium}$$\\end{document} and ACORN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\textsf {ACORN}$$\\end{document} respectively. To the best of our knowledge, these results are best results as compared to the existing results on distinguishing attacks of these ciphers. We also provide a table of good cubes of sizes varying from 10 to 40 for these three ciphers.",
"genre": "article",
"id": "sg:pub.10.1007/s10623-019-00674-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136552",
"issn": [
"0925-1022",
"1573-7586"
],
"name": "Designs, Codes and Cryptography",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"good cubes",
"stream cipher",
"new algorithm",
"algorithm",
"distinguisher",
"new cube",
"nonlinear feedback shift registers",
"feedback shift registers",
"shift register",
"cipher",
"similar techniques",
"better results",
"work",
"Sarkar et al",
"idea",
"cube",
"results",
"rounds",
"technique",
"initialization rounds",
"knowledge",
"attacks",
"table",
"et al",
"Liu",
"generation",
"Register",
"zeros",
"one",
"size",
"al",
"size 39",
"size 56",
"paper",
"cube generation",
"different nonlinear feedback shift register",
"small size good cubes",
"size good cubes",
"New cube distinguishers",
"cube distinguishers"
],
"name": "New cube distinguishers on NFSR-based stream ciphers",
"pagination": "173-199",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1120970687"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10623-019-00674-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10623-019-00674-1",
"https://app.dimensions.ai/details/publication/pub.1120970687"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T18:50",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_794.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10623-019-00674-1"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00674-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00674-1'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00674-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00674-1'

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      22 PREDICATES      81 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0804
3 schema:author Ndc5a2284b8d84a81aefc8a2b47df60a8
4 schema:citation sg:pub.10.1007/978-3-319-60055-0_22
5 sg:pub.10.1007/978-3-319-63697-9_8
6 sg:pub.10.1007/978-3-319-78375-8_23
7 sg:pub.10.1007/978-3-319-93638-3_11
8 sg:pub.10.1007/978-3-319-96881-0_6
9 sg:pub.10.1007/978-3-319-96884-1_10
10 sg:pub.10.1007/978-3-540-68164-9_16
11 sg:pub.10.1007/978-3-642-01001-9_16
12 sg:pub.10.1007/978-3-642-03317-9_1
13 sg:pub.10.1007/978-3-642-17401-8_16
14 sg:pub.10.1007/978-3-642-28496-0_12
15 sg:pub.10.1007/978-3-662-43933-3_26
16 sg:pub.10.1007/978-3-662-52993-5_16
17 sg:pub.10.1007/978-981-10-2741-3_2
18 sg:pub.10.1007/s10623-016-0211-x
19 sg:pub.10.1155/asp.2005.1923
20 schema:datePublished 2019-09-11
21 schema:datePublishedReg 2019-09-11
22 schema:description In this paper, we revisit the work of Sarkar et al. (Des Codes Cryptogr 82(1–2):351–375, 2017) and Liu (Advances in cryptology—Crypto 2017, 2017) and show how both of their ideas can be tuned to find good cubes. Here we propose a new algorithm for cube generation which improves existing results on Zero-Sum\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Zero-Sum}}$$\end{document} distinguisher. We apply our new cube finding algorithm to three different nonlinear feedback shift register (NFSR) based stream ciphers Trivium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Trivium}}$$\end{document}, Kreyvium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {Kreyvium}$$\end{document} and ACORN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {ACORN}$$\end{document}. From the results, we can see a cube of size 39, which gives Zero-Sum\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Zero-Sum}}$$\end{document} for maximum 842 rounds and a significant non-randomness up to 850 rounds of Trivium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Trivium}}$$\end{document}. We provide some small size good cubes for Trivium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Trivium}}$$\end{document}, which outperform existing ones. We further investigate Kreyvium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {Kreyvium}$$\end{document} and ACORN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {ACORN}$$\end{document} by a similar technique and obtain cubes of size 56 and 92 which give Zero-Sum\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Zero-Sum}}$$\end{document} distinguisher till 875 and 738 initialization rounds of Kreyvium\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {Kreyvium}$$\end{document} and ACORN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {ACORN}$$\end{document} respectively. To the best of our knowledge, these results are best results as compared to the existing results on distinguishing attacks of these ciphers. We also provide a table of good cubes of sizes varying from 10 to 40 for these three ciphers.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N84b38184af514ca99b77d47fff22027b
27 Naf17004296dc41afa04486456f0555fa
28 sg:journal.1136552
29 schema:keywords Liu
30 New cube distinguishers
31 Register
32 Sarkar et al
33 al
34 algorithm
35 attacks
36 better results
37 cipher
38 cube
39 cube distinguishers
40 cube generation
41 different nonlinear feedback shift register
42 distinguisher
43 et al
44 feedback shift registers
45 generation
46 good cubes
47 idea
48 initialization rounds
49 knowledge
50 new algorithm
51 new cube
52 nonlinear feedback shift registers
53 one
54 paper
55 results
56 rounds
57 shift register
58 similar techniques
59 size
60 size 39
61 size 56
62 size good cubes
63 small size good cubes
64 stream cipher
65 table
66 technique
67 work
68 zeros
69 schema:name New cube distinguishers on NFSR-based stream ciphers
70 schema:pagination 173-199
71 schema:productId N116ab2bdcc6d41e5a344bdd11b39d58a
72 N2ee06d3bc4d1408ba041f84956e513ed
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120970687
74 https://doi.org/10.1007/s10623-019-00674-1
75 schema:sdDatePublished 2022-01-01T18:50
77 schema:sdPublisher N3068c96e470641ac8566961f90c69bf8
78 schema:url https://doi.org/10.1007/s10623-019-00674-1
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N116ab2bdcc6d41e5a344bdd11b39d58a schema:name dimensions_id
83 schema:value pub.1120970687
84 rdf:type schema:PropertyValue
85 N155c7d580323401e911d0af02c752d72 rdf:first sg:person.010456630433.31
86 rdf:rest N431e09cd6f55487b9253286d8dd57ebc
87 N2ee06d3bc4d1408ba041f84956e513ed schema:name doi
88 schema:value 10.1007/s10623-019-00674-1
89 rdf:type schema:PropertyValue
90 N3068c96e470641ac8566961f90c69bf8 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N431e09cd6f55487b9253286d8dd57ebc rdf:first sg:person.013316030122.96
93 rdf:rest N4ff10129db1a4dc69bdbf0ae91d40d45
94 N4ff10129db1a4dc69bdbf0ae91d40d45 rdf:first sg:person.07653531142.18
95 rdf:rest rdf:nil
96 N84b38184af514ca99b77d47fff22027b schema:issueNumber 1
97 rdf:type schema:PublicationIssue
99 rdf:type schema:PublicationVolume
100 Ndc5a2284b8d84a81aefc8a2b47df60a8 rdf:first sg:person.010457144735.42
101 rdf:rest N155c7d580323401e911d0af02c752d72
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
106 schema:name Data Format
107 rdf:type schema:DefinedTerm
108 sg:journal.1136552 schema:issn 0925-1022
109 1573-7586
110 schema:name Designs, Codes and Cryptography
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.010456630433.31 schema:affiliation grid-institutes:None
114 schema:familyName Roy
115 schema:givenName Dibyendu
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456630433.31
117 rdf:type schema:Person
118 sg:person.010457144735.42 schema:affiliation grid-institutes:grid.417969.4
119 schema:familyName Kesarwani
120 schema:givenName Abhishek
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010457144735.42
122 rdf:type schema:Person
123 sg:person.013316030122.96 schema:affiliation grid-institutes:grid.417969.4
124 schema:familyName Sarkar
125 schema:givenName Santanu
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316030122.96
127 rdf:type schema:Person
128 sg:person.07653531142.18 schema:affiliation grid-institutes:grid.410380.e
129 schema:familyName Meier
130 schema:givenName Willi
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18
132 rdf:type schema:Person
133 sg:pub.10.1007/978-3-319-60055-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085709869
134 https://doi.org/10.1007/978-3-319-60055-0_22
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-319-63697-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091024676
137 https://doi.org/10.1007/978-3-319-63697-9_8
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-319-78375-8_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101874793
140 https://doi.org/10.1007/978-3-319-78375-8_23
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-319-93638-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104575142
143 https://doi.org/10.1007/978-3-319-93638-3_11
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-319-96881-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105780992
146 https://doi.org/10.1007/978-3-319-96881-0_6
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-319-96884-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105813840
149 https://doi.org/10.1007/978-3-319-96884-1_10
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-540-68164-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033624456
152 https://doi.org/10.1007/978-3-540-68164-9_16
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-642-01001-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052713322
155 https://doi.org/10.1007/978-3-642-01001-9_16
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-3-642-03317-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320003
158 https://doi.org/10.1007/978-3-642-03317-9_1
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-642-17401-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016256936
161 https://doi.org/10.1007/978-3-642-17401-8_16
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-642-28496-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020197941
164 https://doi.org/10.1007/978-3-642-28496-0_12
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-662-43933-3_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036102667
167 https://doi.org/10.1007/978-3-662-43933-3_26
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-3-662-52993-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052565510
170 https://doi.org/10.1007/978-3-662-52993-5_16
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-981-10-2741-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014037800
173 https://doi.org/10.1007/978-981-10-2741-3_2
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10623-016-0211-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030419806
176 https://doi.org/10.1007/s10623-016-0211-x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1155/asp.2005.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063205527
179 https://doi.org/10.1155/asp.2005.1923
180 rdf:type schema:CreativeWork
181 grid-institutes:None schema:alternateName ERTL(E), STQC, Kolkata, India
182 schema:name ERTL(E), STQC, Kolkata, India
183 rdf:type schema:Organization
184 grid-institutes:grid.410380.e schema:alternateName FHNW, Windisch, Switzerland
185 schema:name FHNW, Windisch, Switzerland
186 rdf:type schema:Organization
187 grid-institutes:grid.417969.4 schema:alternateName Indian Institute of Technology Madras, Chennai, India
188 schema:name Indian Institute of Technology Madras, Chennai, India
189 rdf:type schema:Organization