A new distance-regular graph of diameter 3 on 1024 vertices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-24

AUTHORS

Minjia Shi, Denis S. Krotov, Patrick Solé

ABSTRACT

The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this latter code is completely regular but not completely transitive. Its coset graph is distance-regular of diameter three on 210 vertices, with new intersection array {33,30,15;1,2,15}. The automorphism groups of the code, and of the graph, are determined. Connecting the vertices at distance two gives a strongly regular graph of (previously known) parameters (210,495,238,240). Another strongly regular graph with the same parameters is constructed on the codewords of the dual code. A non trivial completely regular binary code of length 33 is constructed. More... »

PAGES

1-11

References to SciGraph publications

  • 2016-07. Perfect codes in Doob graphs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2012. Spectra of Graphs in NONE
  • 2014-11. On automorphisms of a distance-regular graph with intersection array {33, 30, 15; 1, 2, 15} in DOKLADY MATHEMATICS
  • 2003-09. Designs in Additive Codes over GF(4) in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1989. Distance-Regular Graphs in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w

    DOI

    http://dx.doi.org/10.1007/s10623-019-00609-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111653008


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Anhui University", 
              "id": "https://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sobolev Institute of Mathematics", 
              "id": "https://www.grid.ac/institutes/grid.426295.e", 
              "name": [
                "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krotov", 
            "givenName": "Denis S.", 
            "id": "sg:person.013674271021.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris 8 University", 
              "id": "https://www.grid.ac/institutes/grid.15878.33", 
              "name": [
                "4CNRS/LAGA, University of Paris 8, 2 rue de la Libert\u00e9, 93 526, Saint-Denis, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Patrick", 
            "id": "sg:person.012750235663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1013855957", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0195-6698(85)80004-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015089630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(90)90152-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023232123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025484821641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024057294", 
              "https://doi.org/10.1023/a:1025484821641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/blms/18.2.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026330974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-015-0066-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027946237", 
              "https://doi.org/10.1007/s10623-015-0066-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1064562414070291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030867565", 
              "https://doi.org/10.1134/s1064562414070291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1032245142", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-1939-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032245142", 
              "https://doi.org/10.1007/978-1-4614-1939-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-1939-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032245142", 
              "https://doi.org/10.1007/978-1-4614-1939-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsco.1996.0125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036727338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/eujc.1999.0313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048985517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.681315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.923747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061101675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511807077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098668435"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-24", 
        "datePublishedReg": "2019-01-24", 
        "description": "The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this latter code is completely regular but not completely transitive. Its coset graph is distance-regular of diameter three on 210 vertices, with new intersection array {33,30,15;1,2,15}. The automorphism groups of the code, and of the graph, are determined. Connecting the vertices at distance two gives a strongly regular graph of (previously known) parameters (210,495,238,240). Another strongly regular graph with the same parameters is constructed on the codewords of the dual code. A non trivial completely regular binary code of length 33 is constructed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10623-019-00609-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }
        ], 
        "name": "A new distance-regular graph of diameter 3 on 1024 vertices", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f0ecd7ec3a4abd275f24e85067a55f4d2ae246cdced56482d8720f7803196ac8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-019-00609-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111653008"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-019-00609-w", 
          "https://app.dimensions.ai/details/publication/pub.1111653008"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10623-019-00609-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      39 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-019-00609-w schema:about anzsrc-for:14
    2 anzsrc-for:1403
    3 schema:author Nb039fba298754c2abe34e66ac915b058
    4 schema:citation sg:pub.10.1007/978-1-4614-1939-6
    5 sg:pub.10.1007/978-3-642-74341-2
    6 sg:pub.10.1007/s10623-015-0066-6
    7 sg:pub.10.1023/a:1025484821641
    8 sg:pub.10.1134/s1064562414070291
    9 https://app.dimensions.ai/details/publication/pub.1013855957
    10 https://app.dimensions.ai/details/publication/pub.1032245142
    11 https://doi.org/10.1006/eujc.1999.0313
    12 https://doi.org/10.1006/jsco.1996.0125
    13 https://doi.org/10.1016/0012-365x(90)90152-8
    14 https://doi.org/10.1016/s0195-6698(85)80004-4
    15 https://doi.org/10.1017/cbo9780511807077
    16 https://doi.org/10.1109/18.681315
    17 https://doi.org/10.1109/18.923747
    18 https://doi.org/10.1112/blms/18.2.97
    19 schema:datePublished 2019-01-24
    20 schema:datePublishedReg 2019-01-24
    21 schema:description The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this latter code is completely regular but not completely transitive. Its coset graph is distance-regular of diameter three on 210 vertices, with new intersection array {33,30,15;1,2,15}. The automorphism groups of the code, and of the graph, are determined. Connecting the vertices at distance two gives a strongly regular graph of (previously known) parameters (210,495,238,240). Another strongly regular graph with the same parameters is constructed on the codewords of the dual code. A non trivial completely regular binary code of length 33 is constructed.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf sg:journal.1136552
    26 schema:name A new distance-regular graph of diameter 3 on 1024 vertices
    27 schema:pagination 1-11
    28 schema:productId N654ac359541d4f8589ad040fccb7d926
    29 N7d7ebf23b9684c39af0877e7faa3d006
    30 Nae8de61fca534959b8493d18617af403
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111653008
    32 https://doi.org/10.1007/s10623-019-00609-w
    33 schema:sdDatePublished 2019-04-11T08:55
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N0fa30b8f282249d0b46ed43760dc2fd4
    36 schema:url https://link.springer.com/10.1007%2Fs10623-019-00609-w
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0fa30b8f282249d0b46ed43760dc2fd4 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N1e433becc3114bbab7e6f46ee9cb06d3 rdf:first sg:person.012750235663.02
    43 rdf:rest rdf:nil
    44 N654ac359541d4f8589ad040fccb7d926 schema:name readcube_id
    45 schema:value f0ecd7ec3a4abd275f24e85067a55f4d2ae246cdced56482d8720f7803196ac8
    46 rdf:type schema:PropertyValue
    47 N7d7ebf23b9684c39af0877e7faa3d006 schema:name doi
    48 schema:value 10.1007/s10623-019-00609-w
    49 rdf:type schema:PropertyValue
    50 N906a5cae0e8748218b04477232a2ccf5 rdf:first sg:person.013674271021.75
    51 rdf:rest N1e433becc3114bbab7e6f46ee9cb06d3
    52 Nae8de61fca534959b8493d18617af403 schema:name dimensions_id
    53 schema:value pub.1111653008
    54 rdf:type schema:PropertyValue
    55 Nb039fba298754c2abe34e66ac915b058 rdf:first sg:person.012012432235.16
    56 rdf:rest N906a5cae0e8748218b04477232a2ccf5
    57 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Economics
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Econometrics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1136552 schema:issn 0925-1022
    64 1573-7586
    65 schema:name Designs, Codes and Cryptography
    66 rdf:type schema:Periodical
    67 sg:person.012012432235.16 schema:affiliation https://www.grid.ac/institutes/grid.252245.6
    68 schema:familyName Shi
    69 schema:givenName Minjia
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    71 rdf:type schema:Person
    72 sg:person.012750235663.02 schema:affiliation https://www.grid.ac/institutes/grid.15878.33
    73 schema:familyName Solé
    74 schema:givenName Patrick
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
    76 rdf:type schema:Person
    77 sg:person.013674271021.75 schema:affiliation https://www.grid.ac/institutes/grid.426295.e
    78 schema:familyName Krotov
    79 schema:givenName Denis S.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75
    81 rdf:type schema:Person
    82 sg:pub.10.1007/978-1-4614-1939-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032245142
    83 https://doi.org/10.1007/978-1-4614-1939-6
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
    86 https://doi.org/10.1007/978-3-642-74341-2
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s10623-015-0066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027946237
    89 https://doi.org/10.1007/s10623-015-0066-6
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1023/a:1025484821641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024057294
    92 https://doi.org/10.1023/a:1025484821641
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1134/s1064562414070291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030867565
    95 https://doi.org/10.1134/s1064562414070291
    96 rdf:type schema:CreativeWork
    97 https://app.dimensions.ai/details/publication/pub.1013855957 schema:CreativeWork
    98 https://app.dimensions.ai/details/publication/pub.1032245142 schema:CreativeWork
    99 https://doi.org/10.1006/eujc.1999.0313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048985517
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1006/jsco.1996.0125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036727338
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0012-365x(90)90152-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023232123
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/s0195-6698(85)80004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015089630
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1017/cbo9780511807077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668435
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/18.681315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100689
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/18.923747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101675
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1112/blms/18.2.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330974
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.15878.33 schema:alternateName Paris 8 University
    116 schema:name 4CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526, Saint-Denis, France
    117 rdf:type schema:Organization
    118 https://www.grid.ac/institutes/grid.252245.6 schema:alternateName Anhui University
    119 schema:name School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    120 rdf:type schema:Organization
    121 https://www.grid.ac/institutes/grid.426295.e schema:alternateName Sobolev Institute of Mathematics
    122 schema:name Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...