A new distance-regular graph of diameter 3 on 1024 vertices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-24

AUTHORS

Minjia Shi, Denis S. Krotov, Patrick Solé

ABSTRACT

The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this latter code is completely regular but not completely transitive. Its coset graph is distance-regular of diameter three on 210\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{10}$$\end{document} vertices, with new intersection array {33,30,15;1,2,15}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{33,30,15;1,2,15\}$$\end{document}. The automorphism groups of the code, and of the graph, are determined. Connecting the vertices at distance two gives a strongly regular graph of (previously known) parameters (210,495,238,240)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2^{10}, 495,238, 240)$$\end{document}. Another strongly regular graph with the same parameters is constructed on the codewords of the dual code. A non trivial completely regular binary code of length 33 is constructed. More... »

PAGES

2091-2101

References to SciGraph publications

  • 2015-03-26. Perfect codes in Doob graphs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2012. Spectra of Graphs in NONE
  • 2014-11. On automorphisms of a distance-regular graph with intersection array {33, 30, 15; 1, 2, 15} in DOKLADY MATHEMATICS
  • 2003-09. Designs in Additive Codes over GF(4) in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1989. Distance-Regular Graphs in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w

    DOI

    http://dx.doi.org/10.1007/s10623-019-00609-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111653008


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.426295.e", 
              "name": [
                "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krotov", 
            "givenName": "Denis S.", 
            "id": "sg:person.013674271021.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "4CNRS/LAGA, University of Paris 8, 2 rue de la Libert\u00e9, 93 526, Saint-Denis, France", 
              "id": "http://www.grid.ac/institutes/grid.15878.33", 
              "name": [
                "4CNRS/LAGA, University of Paris 8, 2 rue de la Libert\u00e9, 93 526, Saint-Denis, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Patrick", 
            "id": "sg:person.012750235663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-1939-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032245142", 
              "https://doi.org/10.1007/978-1-4614-1939-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-015-0066-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027946237", 
              "https://doi.org/10.1007/s10623-015-0066-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1064562414070291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030867565", 
              "https://doi.org/10.1134/s1064562414070291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025484821641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024057294", 
              "https://doi.org/10.1023/a:1025484821641"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-24", 
        "datePublishedReg": "2019-01-24", 
        "description": "The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this latter code is completely regular but not completely transitive. Its coset graph is distance-regular of diameter three on 210\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{10}$$\\end{document} vertices, with new intersection array {33,30,15;1,2,15}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{33,30,15;1,2,15\\}$$\\end{document}. The automorphism groups of the code, and of the graph, are determined. Connecting the vertices at distance two gives a strongly regular graph of (previously known) parameters (210,495,238,240)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(2^{10}, 495,238, 240)$$\\end{document}. Another strongly regular graph with the same parameters is constructed on the codewords of the dual code. A non trivial completely regular binary code of length 33 is constructed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10623-019-00609-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8306127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "87"
          }
        ], 
        "keywords": [
          "distance 5", 
          "latter codes", 
          "same parameters", 
          "code", 
          "coordinates", 
          "array", 
          "group", 
          "parameters", 
          "diameter 3", 
          "quaternary codes", 
          "length 12", 
          "three", 
          "regular binary code", 
          "vertices", 
          "two", 
          "coset graphs", 
          "automorphism group", 
          "regular graphs", 
          "binary codes", 
          "distance-regular graphs", 
          "packed codes", 
          "graph", 
          "diameter three", 
          "intersection array", 
          "distance two", 
          "dual code", 
          "length 33", 
          "codewords", 
          "dodecacode", 
          "nonlinear additive quaternary code", 
          "additive quaternary code", 
          "new intersection array", 
          "new distance-regular graph"
        ], 
        "name": "A new distance-regular graph of diameter 3 on 1024 vertices", 
        "pagination": "2091-2101", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111653008"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-019-00609-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-019-00609-w", 
          "https://app.dimensions.ai/details/publication/pub.1111653008"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_802.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10623-019-00609-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-019-00609-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      22 PREDICATES      66 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-019-00609-w schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:08
    4 anzsrc-for:0802
    5 anzsrc-for:0804
    6 schema:author Nd9799c1d8d7b4713b6c6269f2c3e8c0d
    7 schema:citation sg:pub.10.1007/978-1-4614-1939-6
    8 sg:pub.10.1007/978-3-642-74341-2
    9 sg:pub.10.1007/s10623-015-0066-6
    10 sg:pub.10.1023/a:1025484821641
    11 sg:pub.10.1134/s1064562414070291
    12 schema:datePublished 2019-01-24
    13 schema:datePublishedReg 2019-01-24
    14 schema:description The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this latter code is completely regular but not completely transitive. Its coset graph is distance-regular of diameter three on 210\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{10}$$\end{document} vertices, with new intersection array {33,30,15;1,2,15}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{33,30,15;1,2,15\}$$\end{document}. The automorphism groups of the code, and of the graph, are determined. Connecting the vertices at distance two gives a strongly regular graph of (previously known) parameters (210,495,238,240)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2^{10}, 495,238, 240)$$\end{document}. Another strongly regular graph with the same parameters is constructed on the codewords of the dual code. A non trivial completely regular binary code of length 33 is constructed.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N7c605f1bf7b1486888ddc16405c44b1d
    19 Ndead753b5e0f4457ba55ece4ba779e3f
    20 sg:journal.1136552
    21 schema:keywords additive quaternary code
    22 array
    23 automorphism group
    24 binary codes
    25 code
    26 codewords
    27 coordinates
    28 coset graphs
    29 diameter 3
    30 diameter three
    31 distance 5
    32 distance two
    33 distance-regular graphs
    34 dodecacode
    35 dual code
    36 graph
    37 group
    38 intersection array
    39 latter codes
    40 length 12
    41 length 33
    42 new distance-regular graph
    43 new intersection array
    44 nonlinear additive quaternary code
    45 packed codes
    46 parameters
    47 quaternary codes
    48 regular binary code
    49 regular graphs
    50 same parameters
    51 three
    52 two
    53 vertices
    54 schema:name A new distance-regular graph of diameter 3 on 1024 vertices
    55 schema:pagination 2091-2101
    56 schema:productId N096714c0d0de4ed2a8e4ae0a272c3749
    57 N096db6372abe44fa96324ec540b3d64c
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111653008
    59 https://doi.org/10.1007/s10623-019-00609-w
    60 schema:sdDatePublished 2021-12-01T19:44
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N3c0d5fe5d0eb4049bae310e540689717
    63 schema:url https://doi.org/10.1007/s10623-019-00609-w
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N096714c0d0de4ed2a8e4ae0a272c3749 schema:name doi
    68 schema:value 10.1007/s10623-019-00609-w
    69 rdf:type schema:PropertyValue
    70 N096db6372abe44fa96324ec540b3d64c schema:name dimensions_id
    71 schema:value pub.1111653008
    72 rdf:type schema:PropertyValue
    73 N3c0d5fe5d0eb4049bae310e540689717 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N7c605f1bf7b1486888ddc16405c44b1d schema:issueNumber 9
    76 rdf:type schema:PublicationIssue
    77 Nbfcd24d79b4048f99c6225d5b410aab3 rdf:first sg:person.013674271021.75
    78 rdf:rest Nd4339a9d2e91448dac8fc566d7bc2854
    79 Nd4339a9d2e91448dac8fc566d7bc2854 rdf:first sg:person.012750235663.02
    80 rdf:rest rdf:nil
    81 Nd9799c1d8d7b4713b6c6269f2c3e8c0d rdf:first sg:person.012012432235.16
    82 rdf:rest Nbfcd24d79b4048f99c6225d5b410aab3
    83 Ndead753b5e0f4457ba55ece4ba779e3f schema:volumeNumber 87
    84 rdf:type schema:PublicationVolume
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Computation Theory and Mathematics
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Data Format
    99 rdf:type schema:DefinedTerm
    100 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s10623-019-00609-w
    101 rdf:type schema:MonetaryGrant
    102 sg:journal.1136552 schema:issn 0925-1022
    103 1573-7586
    104 schema:name Designs, Codes and Cryptography
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    108 schema:familyName Shi
    109 schema:givenName Minjia
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    111 rdf:type schema:Person
    112 sg:person.012750235663.02 schema:affiliation grid-institutes:grid.15878.33
    113 schema:familyName Solé
    114 schema:givenName Patrick
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
    116 rdf:type schema:Person
    117 sg:person.013674271021.75 schema:affiliation grid-institutes:grid.426295.e
    118 schema:familyName Krotov
    119 schema:givenName Denis S.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-1-4614-1939-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032245142
    123 https://doi.org/10.1007/978-1-4614-1939-6
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
    126 https://doi.org/10.1007/978-3-642-74341-2
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10623-015-0066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027946237
    129 https://doi.org/10.1007/s10623-015-0066-6
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1023/a:1025484821641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024057294
    132 https://doi.org/10.1023/a:1025484821641
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1134/s1064562414070291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030867565
    135 https://doi.org/10.1134/s1064562414070291
    136 rdf:type schema:CreativeWork
    137 grid-institutes:grid.15878.33 schema:alternateName 4CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526, Saint-Denis, France
    138 schema:name 4CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526, Saint-Denis, France
    139 rdf:type schema:Organization
    140 grid-institutes:grid.252245.6 schema:alternateName School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    141 schema:name School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    142 rdf:type schema:Organization
    143 grid-institutes:grid.426295.e schema:alternateName Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    144 schema:name Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...