Cubic surfaces over small finite fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Anton Betten, Fatma Karaoglu

ABSTRACT

In the 1960s, Hirschfeld embarked on a program to classify cubic surfaces with 27 lines over finite fields. This work is a contribution to this problem. We develop an algorithm to classify surfaces with 27 lines over a finite field using the classical theory of double-sixes. This algorithm is used to classify these surfaces over all fields of order q at most 97. We then construct a family of cubic surfaces over finite fields of odd order. The generic surfaces in this family have six Eckardt points and they are invariant under a symmetric group of degree four. The family turns out to be isomorphic to the example of a family of cubic surface given over the real numbers by Hilbert and Cohn-Vossen. More... »

PAGES

931-953

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2

DOI

http://dx.doi.org/10.1007/s10623-018-0590-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110283325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Mathematics, Colorado State University, 80523, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Betten", 
        "givenName": "Anton", 
        "id": "sg:person.015350116111.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015350116111.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sussex", 
          "id": "https://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "Department of Mathematics, University of Sussex, BN1 9QH, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karaoglu", 
        "givenName": "Fatma", 
        "id": "sg:person.015631205245.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631205245.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2576802.2576832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001730252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s144678870002276x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004406457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-67412-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010280375", 
          "https://doi.org/10.1007/978-3-642-67412-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-67412-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010280375", 
          "https://doi.org/10.1007/978-3-642-67412-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01442462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030638578", 
          "https://doi.org/10.1007/bf01442462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1982.334.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031336647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2465506.2465508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037635951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40879-017-0182-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091976683", 
          "https://doi.org/10.1007/s40879-017-0182-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511546549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/9781139194006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104478328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96418-8_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105584318", 
          "https://doi.org/10.1007/978-3-319-96418-8_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96418-8_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105584318", 
          "https://doi.org/10.1007/978-3-319-96418-8_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96418-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105584319", 
          "https://doi.org/10.1007/978-3-319-96418-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96418-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105584319", 
          "https://doi.org/10.1007/978-3-319-96418-8_8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In the 1960s, Hirschfeld embarked on a program to classify cubic surfaces with 27 lines over finite fields. This work is a contribution to this problem. We develop an algorithm to classify surfaces with 27 lines over a finite field using the classical theory of double-sixes. This algorithm is used to classify these surfaces over all fields of order q at most 97. We then construct a family of cubic surfaces over finite fields of odd order. The generic surfaces in this family have six Eckardt points and they are invariant under a symmetric group of degree four. The family turns out to be isomorphic to the example of a family of cubic surface given over the real numbers by Hilbert and Cohn-Vossen.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10623-018-0590-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Cubic surfaces over small finite fields", 
    "pagination": "931-953", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "957488941a823e1774739c01c95cff4bd98ced9521b2fea6fa8fc817f3ada2bf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10623-018-0590-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110283325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10623-018-0590-2", 
      "https://app.dimensions.ai/details/publication/pub.1110283325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10623-018-0590-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10623-018-0590-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2ca167e99bda40aa8f6dea0d34a50c9a
4 schema:citation sg:pub.10.1007/978-3-319-96418-8_7
5 sg:pub.10.1007/978-3-319-96418-8_8
6 sg:pub.10.1007/978-3-642-67412-9
7 sg:pub.10.1007/bf01442462
8 sg:pub.10.1007/s40879-017-0182-0
9 https://doi.org/10.1017/9781139194006
10 https://doi.org/10.1017/cbo9780511546549
11 https://doi.org/10.1017/s144678870002276x
12 https://doi.org/10.1145/2465506.2465508
13 https://doi.org/10.1145/2576802.2576832
14 https://doi.org/10.1515/crll.1982.334.40
15 schema:datePublished 2019-04
16 schema:datePublishedReg 2019-04-01
17 schema:description In the 1960s, Hirschfeld embarked on a program to classify cubic surfaces with 27 lines over finite fields. This work is a contribution to this problem. We develop an algorithm to classify surfaces with 27 lines over a finite field using the classical theory of double-sixes. This algorithm is used to classify these surfaces over all fields of order q at most 97. We then construct a family of cubic surfaces over finite fields of odd order. The generic surfaces in this family have six Eckardt points and they are invariant under a symmetric group of degree four. The family turns out to be isomorphic to the example of a family of cubic surface given over the real numbers by Hilbert and Cohn-Vossen.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N6b51e554abc14de9a687780fb89a055f
22 Nafe6ce2981514b02b580e2f15d51345d
23 sg:journal.1136552
24 schema:name Cubic surfaces over small finite fields
25 schema:pagination 931-953
26 schema:productId N81c2e140b5df4f26802ec819291b2d17
27 Nd876e18149c847b6b9466351015836e3
28 Ned6e78041e7a4b01b97ff532a8597f52
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110283325
30 https://doi.org/10.1007/s10623-018-0590-2
31 schema:sdDatePublished 2019-04-11T14:02
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb9a5658045794fc387a136b4d5c175f0
34 schema:url https://link.springer.com/10.1007%2Fs10623-018-0590-2
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2ca167e99bda40aa8f6dea0d34a50c9a rdf:first sg:person.015350116111.34
39 rdf:rest Nf2d17d77b81d4b36952d55f9421170a5
40 N6b51e554abc14de9a687780fb89a055f schema:volumeNumber 87
41 rdf:type schema:PublicationVolume
42 N81c2e140b5df4f26802ec819291b2d17 schema:name doi
43 schema:value 10.1007/s10623-018-0590-2
44 rdf:type schema:PropertyValue
45 Nafe6ce2981514b02b580e2f15d51345d schema:issueNumber 4
46 rdf:type schema:PublicationIssue
47 Nb9a5658045794fc387a136b4d5c175f0 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nd876e18149c847b6b9466351015836e3 schema:name readcube_id
50 schema:value 957488941a823e1774739c01c95cff4bd98ced9521b2fea6fa8fc817f3ada2bf
51 rdf:type schema:PropertyValue
52 Ned6e78041e7a4b01b97ff532a8597f52 schema:name dimensions_id
53 schema:value pub.1110283325
54 rdf:type schema:PropertyValue
55 Nf2d17d77b81d4b36952d55f9421170a5 rdf:first sg:person.015631205245.21
56 rdf:rest rdf:nil
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136552 schema:issn 0925-1022
64 1573-7586
65 schema:name Designs, Codes and Cryptography
66 rdf:type schema:Periodical
67 sg:person.015350116111.34 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
68 schema:familyName Betten
69 schema:givenName Anton
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015350116111.34
71 rdf:type schema:Person
72 sg:person.015631205245.21 schema:affiliation https://www.grid.ac/institutes/grid.12082.39
73 schema:familyName Karaoglu
74 schema:givenName Fatma
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631205245.21
76 rdf:type schema:Person
77 sg:pub.10.1007/978-3-319-96418-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584318
78 https://doi.org/10.1007/978-3-319-96418-8_7
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/978-3-319-96418-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584319
81 https://doi.org/10.1007/978-3-319-96418-8_8
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-3-642-67412-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010280375
84 https://doi.org/10.1007/978-3-642-67412-9
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01442462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030638578
87 https://doi.org/10.1007/bf01442462
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s40879-017-0182-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091976683
90 https://doi.org/10.1007/s40879-017-0182-0
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/9781139194006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104478328
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/cbo9780511546549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664225
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/s144678870002276x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004406457
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1145/2465506.2465508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037635951
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1145/2576802.2576832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001730252
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1515/crll.1982.334.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031336647
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.12082.39 schema:alternateName University of Sussex
105 schema:name Department of Mathematics, University of Sussex, BN1 9QH, Brighton, UK
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
108 schema:name Department of Mathematics, Colorado State University, 80523, Fort Collins, CO, USA
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...