2019-04
AUTHORS ABSTRACTIn the 1960s, Hirschfeld embarked on a program to classify cubic surfaces with 27 lines over finite fields. This work is a contribution to this problem. We develop an algorithm to classify surfaces with 27 lines over a finite field using the classical theory of double-sixes. This algorithm is used to classify these surfaces over all fields of order q at most 97. We then construct a family of cubic surfaces over finite fields of odd order. The generic surfaces in this family have six Eckardt points and they are invariant under a symmetric group of degree four. The family turns out to be isomorphic to the example of a family of cubic surface given over the real numbers by Hilbert and Cohn-Vossen. More... »
PAGES931-953
http://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2
DOIhttp://dx.doi.org/10.1007/s10623-018-0590-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1110283325
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Colorado State University",
"id": "https://www.grid.ac/institutes/grid.47894.36",
"name": [
"Department of Mathematics, Colorado State University, 80523, Fort Collins, CO, USA"
],
"type": "Organization"
},
"familyName": "Betten",
"givenName": "Anton",
"id": "sg:person.015350116111.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015350116111.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Sussex",
"id": "https://www.grid.ac/institutes/grid.12082.39",
"name": [
"Department of Mathematics, University of Sussex, BN1 9QH, Brighton, UK"
],
"type": "Organization"
},
"familyName": "Karaoglu",
"givenName": "Fatma",
"id": "sg:person.015631205245.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631205245.21"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/2576802.2576832",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001730252"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s144678870002276x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004406457"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-67412-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010280375",
"https://doi.org/10.1007/978-3-642-67412-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-67412-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010280375",
"https://doi.org/10.1007/978-3-642-67412-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01442462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030638578",
"https://doi.org/10.1007/bf01442462"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/crll.1982.334.40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031336647"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2465506.2465508",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037635951"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40879-017-0182-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091976683",
"https://doi.org/10.1007/s40879-017-0182-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511546549",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098664225"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/9781139194006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104478328"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96418-8_7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105584318",
"https://doi.org/10.1007/978-3-319-96418-8_7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96418-8_7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105584318",
"https://doi.org/10.1007/978-3-319-96418-8_7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96418-8_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105584319",
"https://doi.org/10.1007/978-3-319-96418-8_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96418-8_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105584319",
"https://doi.org/10.1007/978-3-319-96418-8_8"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "In the 1960s, Hirschfeld embarked on a program to classify cubic surfaces with 27 lines over finite fields. This work is a contribution to this problem. We develop an algorithm to classify surfaces with 27 lines over a finite field using the classical theory of double-sixes. This algorithm is used to classify these surfaces over all fields of order q at most 97. We then construct a family of cubic surfaces over finite fields of odd order. The generic surfaces in this family have six Eckardt points and they are invariant under a symmetric group of degree four. The family turns out to be isomorphic to the example of a family of cubic surface given over the real numbers by Hilbert and Cohn-Vossen.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10623-018-0590-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136552",
"issn": [
"0925-1022",
"1573-7586"
],
"name": "Designs, Codes and Cryptography",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "87"
}
],
"name": "Cubic surfaces over small finite fields",
"pagination": "931-953",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"957488941a823e1774739c01c95cff4bd98ced9521b2fea6fa8fc817f3ada2bf"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10623-018-0590-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1110283325"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10623-018-0590-2",
"https://app.dimensions.ai/details/publication/pub.1110283325"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T14:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000006.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10623-018-0590-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0590-2'
This table displays all metadata directly associated to this object as RDF triples.
109 TRIPLES
21 PREDICATES
38 URIs
19 LITERALS
7 BLANK NODES