Additive perfect codes in Doob graphs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-29

AUTHORS

Minjia Shi, Daitao Huang, Denis S. Krotov

ABSTRACT

The Doob graph D(m, n) is the Cartesian product of m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document} copies of the Shrikhande graph and n copies of the complete graph of order 4. Naturally, D(m, n) can be represented as a Cayley graph on the additive group (Z42)m×(Z22)n′×Z4n′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Z_4^2)^m \times (Z_2^2)^{n'} \times Z_4^{n''}$$\end{document}, where n′+n′′=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n'+n''=n$$\end{document}. A set of vertices of D(m, n) is called an additive code if it forms a subgroup of this group. We construct a 3-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive 1-perfect codes in D(m,n′+n′′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(m,n'+n'')$$\end{document} are sufficient. Additionally, two quasi-cyclic additive 1-perfect codes are constructed in D(155,0+31)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(155,0+31)$$\end{document} and D(2667,0+127)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(2667,0+127)$$\end{document}. More... »

PAGES

1857-1869

References to SciGraph publications

  • 2015-03-26. Perfect codes in Doob graphs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2016-12-31. There is exactly one Z2Z4-cyclic 1-perfect code in DESIGNS, CODES AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-018-0586-y

    DOI

    http://dx.doi.org/10.1007/s10623-018-0586-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110267010


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Daitao", 
            "id": "sg:person.014750321734.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750321734.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.426295.e", 
              "name": [
                "Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krotov", 
            "givenName": "Denis S.", 
            "id": "sg:person.013674271021.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10623-015-0066-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027946237", 
              "https://doi.org/10.1007/s10623-015-0066-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-016-0323-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044948692", 
              "https://doi.org/10.1007/s10623-016-0323-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-29", 
        "datePublishedReg": "2018-11-29", 
        "description": "The Doob graph D(m,\u00a0n) is the Cartesian product of m>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$m>0$$\\end{document} copies of the Shrikhande graph and n copies of the complete graph of order 4. Naturally, D(m,\u00a0n) can be represented as a Cayley graph on the additive group (Z42)m\u00d7(Z22)n\u2032\u00d7Z4n\u2032\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(Z_4^2)^m \\times (Z_2^2)^{n'} \\times Z_4^{n''}$$\\end{document}, where n\u2032+n\u2032\u2032=n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n'+n''=n$$\\end{document}. A set of vertices of D(m,\u00a0n) is called an additive code if it forms a subgroup of this group. We construct a 3-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive 1-perfect codes in D(m,n\u2032+n\u2032\u2032)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$D(m,n'+n'')$$\\end{document} are sufficient. Additionally, two quasi-cyclic additive 1-perfect codes are constructed in D(155,0+31)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$D(155,0+31)$$\\end{document} and D(2667,0+127)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$D(2667,0+127)$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10623-018-0586-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8306127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "87"
          }
        ], 
        "keywords": [
          "graph", 
          "group", 
          "set of vertices", 
          "perfect codes", 
          "Cartesian product", 
          "copies", 
          "complete graph", 
          "order 4", 
          "Cayley graphs", 
          "additive group", 
          "set", 
          "vertices", 
          "additive codes", 
          "code", 
          "subgroups", 
          "class", 
          "necessary condition", 
          "conditions", 
          "existence", 
          "products", 
          "Doob graphs", 
          "Shrikhande graph", 
          "additive perfect codes"
        ], 
        "name": "Additive perfect codes in Doob graphs", 
        "pagination": "1857-1869", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110267010"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-018-0586-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-018-0586-y", 
          "https://app.dimensions.ai/details/publication/pub.1110267010"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_755.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10623-018-0586-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0586-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0586-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0586-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0586-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      22 PREDICATES      50 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-018-0586-y schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Nd67106b82d0f4d4e861411df1f71b676
    4 schema:citation sg:pub.10.1007/s10623-015-0066-6
    5 sg:pub.10.1007/s10623-016-0323-3
    6 schema:datePublished 2018-11-29
    7 schema:datePublishedReg 2018-11-29
    8 schema:description The Doob graph D(m, n) is the Cartesian product of m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document} copies of the Shrikhande graph and n copies of the complete graph of order 4. Naturally, D(m, n) can be represented as a Cayley graph on the additive group (Z42)m×(Z22)n′×Z4n′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Z_4^2)^m \times (Z_2^2)^{n'} \times Z_4^{n''}$$\end{document}, where n′+n′′=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n'+n''=n$$\end{document}. A set of vertices of D(m, n) is called an additive code if it forms a subgroup of this group. We construct a 3-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive 1-perfect codes in D(m,n′+n′′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(m,n'+n'')$$\end{document} are sufficient. Additionally, two quasi-cyclic additive 1-perfect codes are constructed in D(155,0+31)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(155,0+31)$$\end{document} and D(2667,0+127)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(2667,0+127)$$\end{document}.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf Na9bf353c02e74734b66fd351ed880e6d
    13 Nd016ea530938439c82467b64664c5804
    14 sg:journal.1136552
    15 schema:keywords Cartesian product
    16 Cayley graphs
    17 Doob graphs
    18 Shrikhande graph
    19 additive codes
    20 additive group
    21 additive perfect codes
    22 class
    23 code
    24 complete graph
    25 conditions
    26 copies
    27 existence
    28 graph
    29 group
    30 necessary condition
    31 order 4
    32 perfect codes
    33 products
    34 set
    35 set of vertices
    36 subgroups
    37 vertices
    38 schema:name Additive perfect codes in Doob graphs
    39 schema:pagination 1857-1869
    40 schema:productId N60a66b346bdd4a318faccd1df2b90161
    41 Nb17374eb742d42c698749fe1093a0e67
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110267010
    43 https://doi.org/10.1007/s10623-018-0586-y
    44 schema:sdDatePublished 2022-01-01T18:48
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N500e6074aae84fb395c58b0306429889
    47 schema:url https://doi.org/10.1007/s10623-018-0586-y
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N500e6074aae84fb395c58b0306429889 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N60a66b346bdd4a318faccd1df2b90161 schema:name doi
    54 schema:value 10.1007/s10623-018-0586-y
    55 rdf:type schema:PropertyValue
    56 N6c23345fe6f34d8795bc0435247b1b94 rdf:first sg:person.013674271021.75
    57 rdf:rest rdf:nil
    58 N789e11d58cf3498cbf6a7ecdebe2e9c2 rdf:first sg:person.014750321734.92
    59 rdf:rest N6c23345fe6f34d8795bc0435247b1b94
    60 Na9bf353c02e74734b66fd351ed880e6d schema:volumeNumber 87
    61 rdf:type schema:PublicationVolume
    62 Nb17374eb742d42c698749fe1093a0e67 schema:name dimensions_id
    63 schema:value pub.1110267010
    64 rdf:type schema:PropertyValue
    65 Nd016ea530938439c82467b64664c5804 schema:issueNumber 8
    66 rdf:type schema:PublicationIssue
    67 Nd67106b82d0f4d4e861411df1f71b676 rdf:first sg:person.012012432235.16
    68 rdf:rest N789e11d58cf3498cbf6a7ecdebe2e9c2
    69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Information and Computing Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Computation Theory and Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s10623-018-0586-y
    76 rdf:type schema:MonetaryGrant
    77 sg:journal.1136552 schema:issn 0925-1022
    78 1573-7586
    79 schema:name Designs, Codes and Cryptography
    80 schema:publisher Springer Nature
    81 rdf:type schema:Periodical
    82 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    83 schema:familyName Shi
    84 schema:givenName Minjia
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    86 rdf:type schema:Person
    87 sg:person.013674271021.75 schema:affiliation grid-institutes:grid.426295.e
    88 schema:familyName Krotov
    89 schema:givenName Denis S.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674271021.75
    91 rdf:type schema:Person
    92 sg:person.014750321734.92 schema:affiliation grid-institutes:grid.252245.6
    93 schema:familyName Huang
    94 schema:givenName Daitao
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750321734.92
    96 rdf:type schema:Person
    97 sg:pub.10.1007/s10623-015-0066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027946237
    98 https://doi.org/10.1007/s10623-015-0066-6
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10623-016-0323-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044948692
    101 https://doi.org/10.1007/s10623-016-0323-3
    102 rdf:type schema:CreativeWork
    103 grid-institutes:grid.252245.6 schema:alternateName School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    104 schema:name School of Mathematical Sciences, Anhui University, 230601, Hefei, Anhui, China
    105 rdf:type schema:Organization
    106 grid-institutes:grid.426295.e schema:alternateName Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    107 schema:name Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, 630090, Novosibirsk, Russia
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...