Equiangular tight frames from group divisible designs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-09

AUTHORS

Matthew Fickus, John Jasper

ABSTRACT

An equiangular tight frame (ETF) is a type of optimal packing of lines in a real or complex Hilbert space. In the complex case, the existence of an ETF of a given size remains an open problem in many cases. In this paper, we observe that many of the known constructions of ETFs are of one of two types. We further provide a new method for combining a given ETF of one of these two types with an appropriate group divisible design (GDD) in order to produce a larger ETF of the same type. By applying this method to known families of ETFs and GDDs, we obtain several new infinite families of ETFs. The real instances of these ETFs correspond to several new infinite families of strongly regular graphs. Our approach was inspired by a seminal paper of Davis and Jedwab which both unified and generalized McFarland and Spence difference sets. Our main result is a combinatorial analog of their algebraic results. More... »

PAGES

1-25

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-018-0569-z

DOI

http://dx.doi.org/10.1007/s10623-018-0569-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107497266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Air Force Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.427848.5", 
          "name": [
            "Department of Mathematics and Statistics, Air Force Institute of Technology, 45433, Wright-Patterson AFB, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fickus", 
        "givenName": "Matthew", 
        "id": "sg:person.0630720510.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630720510.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.263791.8", 
          "name": [
            "Department of Mathematics and Statistics, South Dakota State University, 57007, Brookings, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jasper", 
        "givenName": "John", 
        "id": "sg:person.014164617027.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014164617027.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0097-3165(77)90068-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000081797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2008.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000183068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001636655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcta.1999.3005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005146135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ffta.1997.0184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008400280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(72)90028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008590169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1385-7258(66)50038-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010288022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-013-9293-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014050518", 
          "https://doi.org/10.1007/s00041-013-9293-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcta.1997.2765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019403856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2007.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021457027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1737053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022065371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2008.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022613793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2011.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024422932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2009.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027315765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-006-9009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028992635", 
          "https://doi.org/10.1007/s10623-006-9009-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(73)90123-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029341513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcta.1997.2796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2007.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033264782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033859032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(73)90031-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037936313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1063-5203(03)00023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039140541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1063-5203(03)00023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039140541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040674248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcta.2011.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043565484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2016.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050056537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2016.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050056537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2003.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050800654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2003.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050800654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-2010-10435-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059332833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1974.1055219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.839492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.846411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2007.907343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061651527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2013.2285565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061654675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2016.2587865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061655955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219749911006776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063006255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1965.15.319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069063507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1967920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1970-067-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072265358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/axioms6030021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090742333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcta.2017.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091289380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2017.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093136225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4995444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093157238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2018.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105778002"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-09", 
    "datePublishedReg": "2018-10-09", 
    "description": "An equiangular tight frame (ETF) is a type of optimal packing of lines in a real or complex Hilbert space. In the complex case, the existence of an ETF of a given size remains an open problem in many cases. In this paper, we observe that many of the known constructions of ETFs are of one of two types. We further provide a new method for combining a given ETF of one of these two types with an appropriate group divisible design (GDD) in order to produce a larger ETF of the same type. By applying this method to known families of ETFs and GDDs, we obtain several new infinite families of ETFs. The real instances of these ETFs correspond to several new infinite families of strongly regular graphs. Our approach was inspired by a seminal paper of Davis and Jedwab which both unified and generalized McFarland and Spence difference sets. Our main result is a combinatorial analog of their algebraic results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10623-018-0569-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "type": "Periodical"
      }
    ], 
    "name": "Equiangular tight frames from group divisible designs", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d417897557942e68b410a47ff9636f354e790ae53a0f3190a35150f3f1ecb61"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10623-018-0569-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107497266"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10623-018-0569-z", 
      "https://app.dimensions.ai/details/publication/pub.1107497266"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000557.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10623-018-0569-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0569-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0569-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0569-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0569-z'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      65 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10623-018-0569-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N683f656e37544cdc9d82f9db8c89a8a4
4 schema:citation sg:pub.10.1007/s00041-013-9293-2
5 sg:pub.10.1007/s10623-006-9009-6
6 https://doi.org/10.1006/ffta.1997.0184
7 https://doi.org/10.1006/jcta.1997.2765
8 https://doi.org/10.1006/jcta.1997.2796
9 https://doi.org/10.1006/jcta.1999.3005
10 https://doi.org/10.1016/0021-8693(73)90123-3
11 https://doi.org/10.1016/0097-3165(72)90028-3
12 https://doi.org/10.1016/0097-3165(73)90031-9
13 https://doi.org/10.1016/0097-3165(77)90068-1
14 https://doi.org/10.1016/j.acha.2011.09.005
15 https://doi.org/10.1016/j.acha.2016.06.004
16 https://doi.org/10.1016/j.acha.2017.11.007
17 https://doi.org/10.1016/j.jcta.2011.04.003
18 https://doi.org/10.1016/j.jcta.2017.08.005
19 https://doi.org/10.1016/j.laa.2003.07.012
20 https://doi.org/10.1016/j.laa.2007.05.029
21 https://doi.org/10.1016/j.laa.2007.05.043
22 https://doi.org/10.1016/j.laa.2008.02.030
23 https://doi.org/10.1016/j.laa.2008.08.002
24 https://doi.org/10.1016/j.laa.2009.07.016
25 https://doi.org/10.1016/j.laa.2011.06.027
26 https://doi.org/10.1016/j.laa.2015.02.020
27 https://doi.org/10.1016/j.laa.2015.09.029
28 https://doi.org/10.1016/j.laa.2018.07.019
29 https://doi.org/10.1016/s1063-5203(03)00023-x
30 https://doi.org/10.1016/s1385-7258(66)50038-5
31 https://doi.org/10.1063/1.1737053
32 https://doi.org/10.1063/1.4995444
33 https://doi.org/10.1090/s0002-9939-2010-10435-5
34 https://doi.org/10.1109/tit.1974.1055219
35 https://doi.org/10.1109/tit.2004.839492
36 https://doi.org/10.1109/tit.2005.846411
37 https://doi.org/10.1109/tit.2007.907343
38 https://doi.org/10.1109/tit.2013.2285565
39 https://doi.org/10.1109/tit.2016.2587865
40 https://doi.org/10.1142/s0219749911006776
41 https://doi.org/10.2140/pjm.1965.15.319
42 https://doi.org/10.2307/1967920
43 https://doi.org/10.3390/axioms6030021
44 https://doi.org/10.4153/cjm-1970-067-9
45 schema:datePublished 2018-10-09
46 schema:datePublishedReg 2018-10-09
47 schema:description An equiangular tight frame (ETF) is a type of optimal packing of lines in a real or complex Hilbert space. In the complex case, the existence of an ETF of a given size remains an open problem in many cases. In this paper, we observe that many of the known constructions of ETFs are of one of two types. We further provide a new method for combining a given ETF of one of these two types with an appropriate group divisible design (GDD) in order to produce a larger ETF of the same type. By applying this method to known families of ETFs and GDDs, we obtain several new infinite families of ETFs. The real instances of these ETFs correspond to several new infinite families of strongly regular graphs. Our approach was inspired by a seminal paper of Davis and Jedwab which both unified and generalized McFarland and Spence difference sets. Our main result is a combinatorial analog of their algebraic results.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf sg:journal.1136552
52 schema:name Equiangular tight frames from group divisible designs
53 schema:pagination 1-25
54 schema:productId N74a1dfd7132546bf9c9b9f64b9c0a52b
55 Nd4eef39381b4474a84596ae898207c8d
56 Nedf156a881134d02a74acdf21e284017
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107497266
58 https://doi.org/10.1007/s10623-018-0569-z
59 schema:sdDatePublished 2019-04-11T00:24
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nef23ef14a4344fbaa6c56f32d9735448
62 schema:url https://link.springer.com/10.1007%2Fs10623-018-0569-z
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N2a0746c4de424e8393025b7a2afbfa13 rdf:first sg:person.014164617027.25
67 rdf:rest rdf:nil
68 N683f656e37544cdc9d82f9db8c89a8a4 rdf:first sg:person.0630720510.13
69 rdf:rest N2a0746c4de424e8393025b7a2afbfa13
70 N74a1dfd7132546bf9c9b9f64b9c0a52b schema:name doi
71 schema:value 10.1007/s10623-018-0569-z
72 rdf:type schema:PropertyValue
73 Nd4eef39381b4474a84596ae898207c8d schema:name readcube_id
74 schema:value 8d417897557942e68b410a47ff9636f354e790ae53a0f3190a35150f3f1ecb61
75 rdf:type schema:PropertyValue
76 Nedf156a881134d02a74acdf21e284017 schema:name dimensions_id
77 schema:value pub.1107497266
78 rdf:type schema:PropertyValue
79 Nef23ef14a4344fbaa6c56f32d9735448 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136552 schema:issn 0925-1022
88 1573-7586
89 schema:name Designs, Codes and Cryptography
90 rdf:type schema:Periodical
91 sg:person.014164617027.25 schema:affiliation https://www.grid.ac/institutes/grid.263791.8
92 schema:familyName Jasper
93 schema:givenName John
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014164617027.25
95 rdf:type schema:Person
96 sg:person.0630720510.13 schema:affiliation https://www.grid.ac/institutes/grid.427848.5
97 schema:familyName Fickus
98 schema:givenName Matthew
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630720510.13
100 rdf:type schema:Person
101 sg:pub.10.1007/s00041-013-9293-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014050518
102 https://doi.org/10.1007/s00041-013-9293-2
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10623-006-9009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028992635
105 https://doi.org/10.1007/s10623-006-9009-6
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1006/ffta.1997.0184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008400280
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1006/jcta.1997.2765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019403856
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1006/jcta.1997.2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687967
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/jcta.1999.3005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005146135
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0021-8693(73)90123-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029341513
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0097-3165(72)90028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008590169
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0097-3165(73)90031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037936313
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0097-3165(77)90068-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000081797
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.acha.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033859032
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.acha.2016.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050056537
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.acha.2017.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093136225
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jcta.2011.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043565484
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jcta.2017.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091289380
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.laa.2003.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050800654
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.laa.2007.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033264782
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.laa.2007.05.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021457027
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.laa.2008.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000183068
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.laa.2008.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022613793
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.laa.2009.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027315765
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.laa.2011.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024422932
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.laa.2015.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040674248
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.laa.2015.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001636655
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.laa.2018.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105778002
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1063-5203(03)00023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039140541
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s1385-7258(66)50038-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010288022
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.1737053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022065371
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.4995444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093157238
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1090/s0002-9939-2010-10435-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332833
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tit.1974.1055219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647461
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tit.2004.839492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650342
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tit.2005.846411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650494
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tit.2007.907343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061651527
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tit.2013.2285565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061654675
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tit.2016.2587865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061655955
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1142/s0219749911006776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063006255
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2140/pjm.1965.15.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063507
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2307/1967920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673372
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3390/axioms6030021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090742333
182 rdf:type schema:CreativeWork
183 https://doi.org/10.4153/cjm-1970-067-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072265358
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.263791.8 schema:alternateName South Dakota State University
186 schema:name Department of Mathematics and Statistics, South Dakota State University, 57007, Brookings, SD, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.427848.5 schema:alternateName Air Force Institute of Technology
189 schema:name Department of Mathematics and Statistics, Air Force Institute of Technology, 45433, Wright-Patterson AFB, OH, USA
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...