How many weights can a linear code have? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01

AUTHORS

Minjia Shi, Hongwei Zhu, Patrick Solé, Gérard D. Cohen

ABSTRACT

We study the combinatorial function L(k, q), the maximum number of nonzero weights a linear code of dimension k over Fq can have. We determine it completely for q=2, and for k=2, and provide upper and lower bounds in the general case when both k and q are ≥3. A refinement L(n, k, q), as well as nonlinear analogues N(M, q) and N(n, M, q), are also introduced and studied. More... »

PAGES

1-9

References to SciGraph publications

  • 1987-12. Codes with given distances in GRAPHS AND COMBINATORICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-018-0488-z

    DOI

    http://dx.doi.org/10.1007/s10623-018-0488-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103811810


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Anhui University", 
              "id": "https://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, No. 3 Feixi Road, 230039, Hefei, Anhui, People\u2019s Republic of China", 
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Anhui University", 
              "id": "https://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, 230601, Hefei, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Hongwei", 
            "id": "sg:person.014615732132.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615732132.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris 8 University", 
              "id": "https://www.grid.ac/institutes/grid.15878.33", 
              "name": [
                "CNRS/LAGA, University of Paris 8, 2 rue de la Libert\u00e9, 93 526, Saint-Denis, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Patrick", 
            "id": "sg:person.012750235663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "TelecomParisTech, 46 rue Barrault, 75 013, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cohen", 
            "givenName": "G\u00e9rard D.", 
            "id": "sg:person.016304732747.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304732747.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0019-9958(73)80007-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005237190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1938-1501951-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033441141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01788526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044285479", 
              "https://doi.org/10.1007/bf01788526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01788526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044285479", 
              "https://doi.org/10.1007/bf01788526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/83.3.532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044665810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.623161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511807077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098668435"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "We study the combinatorial function L(k, q), the maximum number of nonzero weights a linear code of dimension k over Fq can have. We determine it completely for q=2, and for k=2, and provide upper and lower bounds in the general case when both k and q are \u22653. A refinement L(n, k, q), as well as nonlinear analogues N(M, q) and N(n, M, q), are also introduced and studied.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10623-018-0488-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }
        ], 
        "name": "How many weights can a linear code have?", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5a15d1902b0467bc532664600b5e37f19f81351e5175877dafc9c37616fcac22"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-018-0488-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103811810"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-018-0488-z", 
          "https://app.dimensions.ai/details/publication/pub.1103811810"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10623-018-0488-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0488-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0488-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0488-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-018-0488-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      31 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-018-0488-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nca7818523b474eb2bbb7916efe9a5708
    4 schema:citation sg:pub.10.1007/bf01788526
    5 https://doi.org/10.1016/s0019-9958(73)80007-5
    6 https://doi.org/10.1017/cbo9780511807077
    7 https://doi.org/10.1090/s0002-9947-1938-1501951-4
    8 https://doi.org/10.1109/18.623161
    9 https://doi.org/10.1112/plms/83.3.532
    10 schema:datePublished 2019-01
    11 schema:datePublishedReg 2019-01-01
    12 schema:description We study the combinatorial function L(k, q), the maximum number of nonzero weights a linear code of dimension k over Fq can have. We determine it completely for q=2, and for k=2, and provide upper and lower bounds in the general case when both k and q are ≥3. A refinement L(n, k, q), as well as nonlinear analogues N(M, q) and N(n, M, q), are also introduced and studied.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf sg:journal.1136552
    17 schema:name How many weights can a linear code have?
    18 schema:pagination 1-9
    19 schema:productId N19d6387531014d8e849ebb3bb697f09f
    20 N531e4d5502ce4af485b330038f92bc16
    21 Nd86abf556c7e452797773ef92b31e500
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103811810
    23 https://doi.org/10.1007/s10623-018-0488-z
    24 schema:sdDatePublished 2019-04-11T01:53
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Ne0f54814389f42f0a112f9ea7d12d711
    27 schema:url http://link.springer.com/10.1007/s10623-018-0488-z
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N19d6387531014d8e849ebb3bb697f09f schema:name readcube_id
    32 schema:value 5a15d1902b0467bc532664600b5e37f19f81351e5175877dafc9c37616fcac22
    33 rdf:type schema:PropertyValue
    34 N531e4d5502ce4af485b330038f92bc16 schema:name dimensions_id
    35 schema:value pub.1103811810
    36 rdf:type schema:PropertyValue
    37 N8cc4624227f9407689ddb86fa3eed0b0 rdf:first sg:person.016304732747.10
    38 rdf:rest rdf:nil
    39 Nca7818523b474eb2bbb7916efe9a5708 rdf:first sg:person.012012432235.16
    40 rdf:rest Nfffd3e2934614ea98e30acb5065e6f72
    41 Ncaa45bff4bb74c94a1d29457e407f4ba rdf:first sg:person.012750235663.02
    42 rdf:rest N8cc4624227f9407689ddb86fa3eed0b0
    43 Nd86abf556c7e452797773ef92b31e500 schema:name doi
    44 schema:value 10.1007/s10623-018-0488-z
    45 rdf:type schema:PropertyValue
    46 Ne0f54814389f42f0a112f9ea7d12d711 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nf1856db43ee847b4b92809ba2106aadd schema:name TelecomParisTech, 46 rue Barrault, 75 013, Paris, France
    49 rdf:type schema:Organization
    50 Nfffd3e2934614ea98e30acb5065e6f72 rdf:first sg:person.014615732132.58
    51 rdf:rest Ncaa45bff4bb74c94a1d29457e407f4ba
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1136552 schema:issn 0925-1022
    59 1573-7586
    60 schema:name Designs, Codes and Cryptography
    61 rdf:type schema:Periodical
    62 sg:person.012012432235.16 schema:affiliation https://www.grid.ac/institutes/grid.252245.6
    63 schema:familyName Shi
    64 schema:givenName Minjia
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    66 rdf:type schema:Person
    67 sg:person.012750235663.02 schema:affiliation https://www.grid.ac/institutes/grid.15878.33
    68 schema:familyName Solé
    69 schema:givenName Patrick
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
    71 rdf:type schema:Person
    72 sg:person.014615732132.58 schema:affiliation https://www.grid.ac/institutes/grid.252245.6
    73 schema:familyName Zhu
    74 schema:givenName Hongwei
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615732132.58
    76 rdf:type schema:Person
    77 sg:person.016304732747.10 schema:affiliation Nf1856db43ee847b4b92809ba2106aadd
    78 schema:familyName Cohen
    79 schema:givenName Gérard D.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304732747.10
    81 rdf:type schema:Person
    82 sg:pub.10.1007/bf01788526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044285479
    83 https://doi.org/10.1007/bf01788526
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/s0019-9958(73)80007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005237190
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1017/cbo9780511807077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668435
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1090/s0002-9947-1938-1501951-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033441141
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1109/18.623161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100489
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1112/plms/83.3.532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044665810
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.15878.33 schema:alternateName Paris 8 University
    96 schema:name CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526, Saint-Denis, France
    97 rdf:type schema:Organization
    98 https://www.grid.ac/institutes/grid.252245.6 schema:alternateName Anhui University
    99 schema:name Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, No. 3 Feixi Road, 230039, Hefei, Anhui, People’s Republic of China
    100 School of Mathematical Sciences, Anhui University, 230601, Hefei, People’s Republic of China
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...