Group rings, G-codes and constructions of self-dual and formally self-dual codes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Steven T. Dougherty, Joseph Gildea, Rhian Taylor, Alexander Tylyshchak

ABSTRACT

We describe G-codes, which are codes that are ideals in a group ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. We prove that the dual of a G-code is also a G-code. We give constructions of self-dual and formally self-dual codes in this setting and we improve the existing construction given in Hurley (Int J Pure Appl Math 31(3):319–335, 2006) by showing that one of the conditions given in the theorem is unnecessary and, moreover, it restricts the number of self-dual codes obtained by the construction. We show that several of the standard constructions of self-dual codes are found within our general framework. We prove that our constructed codes must have an automorphism group that contains G as a subgroup. We also prove that a common construction technique for producing self-dual codes cannot produce the putative [72, 36, 16] Type II code. Additionally, we show precisely which groups can be used to construct the extremal Type II codes over length 24 and 48. We define quasi-G codes and give a construction of these codes. More... »

PAGES

2115-2138

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-017-0440-7

DOI

http://dx.doi.org/10.1007/s10623-017-0440-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092692298


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Scranton", 
          "id": "https://www.grid.ac/institutes/grid.267131.0", 
          "name": [
            "Department of Mathematics, University of Scranton, 18510, Scranton, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dougherty", 
        "givenName": "Steven T.", 
        "id": "sg:person.015100155326.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100155326.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chester", 
          "id": "https://www.grid.ac/institutes/grid.43710.31", 
          "name": [
            "University of Chester, Chester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gildea", 
        "givenName": "Joseph", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chester", 
          "id": "https://www.grid.ac/institutes/grid.43710.31", 
          "name": [
            "University of Chester, Chester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Rhian", 
        "id": "sg:person.014045270333.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014045270333.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uzhhorod National University", 
          "id": "https://www.grid.ac/institutes/grid.77512.36", 
          "name": [
            "Department of Algebra, Uzhgorod State University, Uzhhorod, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tylyshchak", 
        "givenName": "Alexander", 
        "id": "sg:person.016235611733.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016235611733.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10623-011-9530-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000508183", 
          "https://doi.org/10.1007/s10623-011-9530-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012598832377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005193567", 
          "https://doi.org/10.1023/a:1012598832377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013906860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020770114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2013.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026425396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(90)90069-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043933369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2011.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046080087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-011-9539-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048150384", 
          "https://doi.org/10.1007/s10623-011-9539-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1970.tb01812.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052304722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.880048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061651074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2008.928260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2011.2145850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2011.2165829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/634/12692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089190716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-59806-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090351995", 
          "https://doi.org/10.1007/978-3-319-59806-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "We describe G-codes, which are codes that are ideals in a group ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. We prove that the dual of a G-code is also a G-code. We give constructions of self-dual and formally self-dual codes in this setting and we improve the existing construction given in Hurley (Int J Pure Appl Math 31(3):319\u2013335, 2006) by showing that one of the conditions given in the theorem is unnecessary and, moreover, it restricts the number of self-dual codes obtained by the construction. We show that several of the standard constructions of self-dual codes are found within our general framework. We prove that our constructed codes must have an automorphism group that contains G as a subgroup. We also prove that a common construction technique for producing self-dual codes cannot produce the putative [72, 36, 16] Type II code. Additionally, we show precisely which groups can be used to construct the extremal Type II codes over length 24 and 48. We define quasi-G codes and give a construction of these codes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10623-017-0440-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Group rings, G-codes and constructions of self-dual and formally self-dual codes", 
    "pagination": "2115-2138", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb6366cd08cc73cfc9d7030113568e69df4275d92f9f523a7a4a4afcbe098113"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10623-017-0440-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092692298"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10623-017-0440-7", 
      "https://app.dimensions.ai/details/publication/pub.1092692298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10623-017-0440-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-017-0440-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-017-0440-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-017-0440-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-017-0440-7'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10623-017-0440-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncef40e2f82904e37bd7b72daf6c6c909
4 schema:citation sg:pub.10.1007/978-3-319-59806-2
5 sg:pub.10.1007/s10623-011-9530-0
6 sg:pub.10.1007/s10623-011-9539-4
7 sg:pub.10.1023/a:1012598832377
8 https://doi.org/10.1002/j.1538-7305.1970.tb01812.x
9 https://doi.org/10.1016/0097-3165(90)90069-9
10 https://doi.org/10.1016/j.ffa.2010.11.002
11 https://doi.org/10.1016/j.ffa.2011.12.001
12 https://doi.org/10.1016/j.ffa.2013.07.007
13 https://doi.org/10.1016/j.ffa.2016.04.002
14 https://doi.org/10.1090/conm/634/12692
15 https://doi.org/10.1109/tit.2006.880048
16 https://doi.org/10.1109/tit.2008.928260
17 https://doi.org/10.1109/tit.2011.2145850
18 https://doi.org/10.1109/tit.2011.2165829
19 schema:datePublished 2018-09
20 schema:datePublishedReg 2018-09-01
21 schema:description We describe G-codes, which are codes that are ideals in a group ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. We prove that the dual of a G-code is also a G-code. We give constructions of self-dual and formally self-dual codes in this setting and we improve the existing construction given in Hurley (Int J Pure Appl Math 31(3):319–335, 2006) by showing that one of the conditions given in the theorem is unnecessary and, moreover, it restricts the number of self-dual codes obtained by the construction. We show that several of the standard constructions of self-dual codes are found within our general framework. We prove that our constructed codes must have an automorphism group that contains G as a subgroup. We also prove that a common construction technique for producing self-dual codes cannot produce the putative [72, 36, 16] Type II code. Additionally, we show precisely which groups can be used to construct the extremal Type II codes over length 24 and 48. We define quasi-G codes and give a construction of these codes.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N12766027c2554c1c94939f91adcb10f2
26 Na264b74a23ac428aa6e44c1e84e6d46a
27 sg:journal.1136552
28 schema:name Group rings, G-codes and constructions of self-dual and formally self-dual codes
29 schema:pagination 2115-2138
30 schema:productId N639cff3f901b4cb1b8f1d08854c05831
31 N78e1b1c28acb45cea99908423b674737
32 Nb3ede8ecbf7f4a08ae3571ac72c7eeb6
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092692298
34 https://doi.org/10.1007/s10623-017-0440-7
35 schema:sdDatePublished 2019-04-11T01:21
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nea26085fd81541f28c846017eb737763
38 schema:url http://link.springer.com/10.1007/s10623-017-0440-7
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N12766027c2554c1c94939f91adcb10f2 schema:issueNumber 9
43 rdf:type schema:PublicationIssue
44 N4e0a1982c2024343a7804ab63c624aee rdf:first sg:person.016235611733.56
45 rdf:rest rdf:nil
46 N639cff3f901b4cb1b8f1d08854c05831 schema:name readcube_id
47 schema:value bb6366cd08cc73cfc9d7030113568e69df4275d92f9f523a7a4a4afcbe098113
48 rdf:type schema:PropertyValue
49 N78e1b1c28acb45cea99908423b674737 schema:name doi
50 schema:value 10.1007/s10623-017-0440-7
51 rdf:type schema:PropertyValue
52 N8444fee1b88f4936bbc769bce182878f rdf:first sg:person.014045270333.70
53 rdf:rest N4e0a1982c2024343a7804ab63c624aee
54 N8ab27c007bf74671ab9c0d354a343ebe schema:affiliation https://www.grid.ac/institutes/grid.43710.31
55 schema:familyName Gildea
56 schema:givenName Joseph
57 rdf:type schema:Person
58 Na264b74a23ac428aa6e44c1e84e6d46a schema:volumeNumber 86
59 rdf:type schema:PublicationVolume
60 Na54450e4c9004999961907f0f43f7e33 rdf:first N8ab27c007bf74671ab9c0d354a343ebe
61 rdf:rest N8444fee1b88f4936bbc769bce182878f
62 Nb3ede8ecbf7f4a08ae3571ac72c7eeb6 schema:name dimensions_id
63 schema:value pub.1092692298
64 rdf:type schema:PropertyValue
65 Ncef40e2f82904e37bd7b72daf6c6c909 rdf:first sg:person.015100155326.15
66 rdf:rest Na54450e4c9004999961907f0f43f7e33
67 Nea26085fd81541f28c846017eb737763 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1136552 schema:issn 0925-1022
76 1573-7586
77 schema:name Designs, Codes and Cryptography
78 rdf:type schema:Periodical
79 sg:person.014045270333.70 schema:affiliation https://www.grid.ac/institutes/grid.43710.31
80 schema:familyName Taylor
81 schema:givenName Rhian
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014045270333.70
83 rdf:type schema:Person
84 sg:person.015100155326.15 schema:affiliation https://www.grid.ac/institutes/grid.267131.0
85 schema:familyName Dougherty
86 schema:givenName Steven T.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100155326.15
88 rdf:type schema:Person
89 sg:person.016235611733.56 schema:affiliation https://www.grid.ac/institutes/grid.77512.36
90 schema:familyName Tylyshchak
91 schema:givenName Alexander
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016235611733.56
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-319-59806-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090351995
95 https://doi.org/10.1007/978-3-319-59806-2
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10623-011-9530-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000508183
98 https://doi.org/10.1007/s10623-011-9530-0
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10623-011-9539-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048150384
101 https://doi.org/10.1007/s10623-011-9539-4
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1012598832377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005193567
104 https://doi.org/10.1023/a:1012598832377
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/j.1538-7305.1970.tb01812.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052304722
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0097-3165(90)90069-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043933369
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.ffa.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020770114
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ffa.2011.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046080087
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ffa.2013.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026425396
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ffa.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013906860
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1090/conm/634/12692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089190716
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tit.2006.880048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061651074
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tit.2008.928260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652101
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tit.2011.2145850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653331
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tit.2011.2165829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653564
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.267131.0 schema:alternateName University of Scranton
129 schema:name Department of Mathematics, University of Scranton, 18510, Scranton, PA, USA
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.43710.31 schema:alternateName University of Chester
132 schema:name University of Chester, Chester, UK
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.77512.36 schema:alternateName Uzhhorod National University
135 schema:name Department of Algebra, Uzhgorod State University, Uzhhorod, Ukraine
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...