Zero-knowledge proofs of knowledge for group homomorphisms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06-03

AUTHORS

Ueli Maurer

ABSTRACT

A simple zero-knowledge proof of knowledge protocol is presented of which many known protocols are instantiations. These include Schnorr’s protocol for proving knowledge of a discrete logarithm, the Fiat–Shamir and Guillou–Quisquater protocols for proving knowledge of a modular root, protocols for proving knowledge of representations (like Okamoto’s protocol), protocols for proving equality of secret values, a protocol for proving the correctness of a Diffie–Hellman key, protocols for proving the multiplicative relation of three commitments (as required in secure multi-party computation), and protocols used in credential systems. This unifies a substantial body of work and can also lead to instantiations of the protocol for new applications. More... »

PAGES

663-676

References to SciGraph publications

  • 1992. New Public-Key Schemes Based on Elliptic Curves over the Ring Zn in ADVANCES IN CRYPTOLOGY — CRYPTO ’91
  • 2009. Unifying Zero-Knowledge Proofs of Knowledge in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2009
  • 1988-06. Zero-knowledge proofs of identity in JOURNAL OF CRYPTOLOGY
  • 2005. Efficient Proofs of Knowledge of Discrete Logarithms and Representations in Groups with Hidden Order in PUBLIC KEY CRYPTOGRAPHY - PKC 2005
  • 1993. Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes in ADVANCES IN CRYPTOLOGY — CRYPTO’ 92
  • 2010. Efficiency Limitations for Σ-Protocols for Group Homomorphisms in THEORY OF CRYPTOGRAPHY
  • 1992. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing in ADVANCES IN CRYPTOLOGY — CRYPTO ’91
  • 2009. Breaking RSA Generically Is Equivalent to Factoring in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009
  • 1988. A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’88
  • 2009. On the Portability of Generalized Schnorr Proofs in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009
  • 2000-12-01. How To Prove Yourself: Practical Solutions to Identification and Signature Problems in ADVANCES IN CRYPTOLOGY — CRYPTO’ 86
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-015-0103-5

    DOI

    http://dx.doi.org/10.1007/s10623-015-0103-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042192424


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maurer", 
            "givenName": "Ueli", 
            "id": "sg:person.01316567627.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-11799-2_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049080804", 
              "https://doi.org/10.1007/978-3-642-11799-2_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021532235", 
              "https://doi.org/10.1007/3-540-46766-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01001-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031721753", 
              "https://doi.org/10.1007/978-3-642-01001-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45961-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048525828", 
              "https://doi.org/10.1007/3-540-45961-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02384-2_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053015012", 
              "https://doi.org/10.1007/978-3-642-02384-2_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48071-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039918288", 
              "https://doi.org/10.1007/3-540-48071-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004655411", 
              "https://doi.org/10.1007/3-540-46766-1_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02351717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001094212", 
              "https://doi.org/10.1007/bf02351717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01001-9_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013621230", 
              "https://doi.org/10.1007/978-3-642-01001-9_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47721-7_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038535610", 
              "https://doi.org/10.1007/3-540-47721-7_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30580-4_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049026414", 
              "https://doi.org/10.1007/978-3-540-30580-4_11"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-06-03", 
        "datePublishedReg": "2015-06-03", 
        "description": "A simple zero-knowledge proof of knowledge protocol is presented of which many known protocols are instantiations. These include Schnorr\u2019s protocol for proving knowledge of a discrete logarithm, the Fiat\u2013Shamir and Guillou\u2013Quisquater protocols for proving knowledge of a modular root, protocols for proving knowledge of representations (like Okamoto\u2019s protocol), protocols for proving equality of secret values, a protocol for proving the correctness of a Diffie\u2013Hellman key, protocols for proving the multiplicative relation of three commitments (as required in secure multi-party computation), and protocols used in credential systems. This unifies a substantial body of work and can also lead to instantiations of the protocol for new applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10623-015-0103-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5222311", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "77"
          }
        ], 
        "keywords": [
          "zero-knowledge proofs", 
          "Diffie-Hellman key", 
          "credential system", 
          "knowledge protocol", 
          "Schnorr protocol", 
          "secret value", 
          "discrete logarithm", 
          "Fiat-Shamir", 
          "instantiation", 
          "new applications", 
          "protocol", 
          "knowledge of representations", 
          "correctness", 
          "proof", 
          "knowledge", 
          "representation", 
          "key", 
          "applications", 
          "system", 
          "group homomorphism", 
          "multiplicative relations", 
          "work", 
          "homomorphism", 
          "substantial body", 
          "logarithm", 
          "values", 
          "relation", 
          "commitment", 
          "equality", 
          "body", 
          "roots"
        ], 
        "name": "Zero-knowledge proofs of knowledge for group homomorphisms", 
        "pagination": "663-676", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042192424"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-015-0103-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-015-0103-5", 
          "https://app.dimensions.ai/details/publication/pub.1042192424"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_682.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10623-015-0103-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-015-0103-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-015-0103-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-015-0103-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-015-0103-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      22 PREDICATES      67 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-015-0103-5 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Ne00c93a44cee423f87b96b9df5d41f3c
    4 schema:citation sg:pub.10.1007/3-540-45961-8_11
    5 sg:pub.10.1007/3-540-46766-1_20
    6 sg:pub.10.1007/3-540-46766-1_9
    7 sg:pub.10.1007/3-540-47721-7_12
    8 sg:pub.10.1007/3-540-48071-4_3
    9 sg:pub.10.1007/978-3-540-30580-4_11
    10 sg:pub.10.1007/978-3-642-01001-9_2
    11 sg:pub.10.1007/978-3-642-01001-9_25
    12 sg:pub.10.1007/978-3-642-02384-2_17
    13 sg:pub.10.1007/978-3-642-11799-2_33
    14 sg:pub.10.1007/bf02351717
    15 schema:datePublished 2015-06-03
    16 schema:datePublishedReg 2015-06-03
    17 schema:description A simple zero-knowledge proof of knowledge protocol is presented of which many known protocols are instantiations. These include Schnorr’s protocol for proving knowledge of a discrete logarithm, the Fiat–Shamir and Guillou–Quisquater protocols for proving knowledge of a modular root, protocols for proving knowledge of representations (like Okamoto’s protocol), protocols for proving equality of secret values, a protocol for proving the correctness of a Diffie–Hellman key, protocols for proving the multiplicative relation of three commitments (as required in secure multi-party computation), and protocols used in credential systems. This unifies a substantial body of work and can also lead to instantiations of the protocol for new applications.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N3137cb9a16144576b921632cefa52fca
    22 N444f6b405aff4caf8d51f94d6c7fff84
    23 sg:journal.1136552
    24 schema:keywords Diffie-Hellman key
    25 Fiat-Shamir
    26 Schnorr protocol
    27 applications
    28 body
    29 commitment
    30 correctness
    31 credential system
    32 discrete logarithm
    33 equality
    34 group homomorphism
    35 homomorphism
    36 instantiation
    37 key
    38 knowledge
    39 knowledge of representations
    40 knowledge protocol
    41 logarithm
    42 multiplicative relations
    43 new applications
    44 proof
    45 protocol
    46 relation
    47 representation
    48 roots
    49 secret value
    50 substantial body
    51 system
    52 values
    53 work
    54 zero-knowledge proofs
    55 schema:name Zero-knowledge proofs of knowledge for group homomorphisms
    56 schema:pagination 663-676
    57 schema:productId N2102e0b7924242d686e1098565a63859
    58 N769103a3ccfa4005ae32c743ffb44546
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042192424
    60 https://doi.org/10.1007/s10623-015-0103-5
    61 schema:sdDatePublished 2022-05-10T10:13
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N9c724cf9ac2d492f918ec1a95e993813
    64 schema:url https://doi.org/10.1007/s10623-015-0103-5
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N2102e0b7924242d686e1098565a63859 schema:name dimensions_id
    69 schema:value pub.1042192424
    70 rdf:type schema:PropertyValue
    71 N3137cb9a16144576b921632cefa52fca schema:volumeNumber 77
    72 rdf:type schema:PublicationVolume
    73 N444f6b405aff4caf8d51f94d6c7fff84 schema:issueNumber 2-3
    74 rdf:type schema:PublicationIssue
    75 N769103a3ccfa4005ae32c743ffb44546 schema:name doi
    76 schema:value 10.1007/s10623-015-0103-5
    77 rdf:type schema:PropertyValue
    78 N9c724cf9ac2d492f918ec1a95e993813 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 Ne00c93a44cee423f87b96b9df5d41f3c rdf:first sg:person.01316567627.91
    81 rdf:rest rdf:nil
    82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information and Computing Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Computation Theory and Mathematics
    87 rdf:type schema:DefinedTerm
    88 sg:grant.5222311 http://pending.schema.org/fundedItem sg:pub.10.1007/s10623-015-0103-5
    89 rdf:type schema:MonetaryGrant
    90 sg:journal.1136552 schema:issn 0925-1022
    91 1573-7586
    92 schema:name Designs, Codes and Cryptography
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.01316567627.91 schema:affiliation grid-institutes:grid.5801.c
    96 schema:familyName Maurer
    97 schema:givenName Ueli
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91
    99 rdf:type schema:Person
    100 sg:pub.10.1007/3-540-45961-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048525828
    101 https://doi.org/10.1007/3-540-45961-8_11
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/3-540-46766-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004655411
    104 https://doi.org/10.1007/3-540-46766-1_20
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/3-540-46766-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021532235
    107 https://doi.org/10.1007/3-540-46766-1_9
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/3-540-47721-7_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038535610
    110 https://doi.org/10.1007/3-540-47721-7_12
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-48071-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039918288
    113 https://doi.org/10.1007/3-540-48071-4_3
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-540-30580-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049026414
    116 https://doi.org/10.1007/978-3-540-30580-4_11
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-642-01001-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031721753
    119 https://doi.org/10.1007/978-3-642-01001-9_2
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-01001-9_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013621230
    122 https://doi.org/10.1007/978-3-642-01001-9_25
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-642-02384-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053015012
    125 https://doi.org/10.1007/978-3-642-02384-2_17
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-11799-2_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049080804
    128 https://doi.org/10.1007/978-3-642-11799-2_33
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf02351717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001094212
    131 https://doi.org/10.1007/bf02351717
    132 rdf:type schema:CreativeWork
    133 grid-institutes:grid.5801.c schema:alternateName Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland
    134 schema:name Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...