Remarks on polarity designs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07

AUTHORS

Dina Ghinelli, Dieter Jungnickel, Klaus Metsch

ABSTRACT

Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]) used polarities of PG(2d − 1, q) to construct non-classical designs with a hyperplane and the same parameters and same intersection numbers as the classical designs PGd(2d, q), for every prime power q and every integer d ≥ 2. Our main result shows that these properties already characterize their polarity designs. Recently, Jungnickel and Tonchev (Des. Codes Cryptogr. [14] introduced new invariants for simple incidence structures , which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of into projective geometries Π = PG(n, q), where an embedding means identifying the points of with a point set V in Π in such a way that every block of is induced as the intersection of V with a suitable subspace of Π. Then the new invariant—which we shall call the geometric dimension geomdimq of —is the smallest value of n for which may be embedded into the n-dimensional projective geometry PG(n, q). The classical designs PGd(n, q) always have the smallest possible geometric dimension among all designs with the same parameters, namely n, and are actually characterized by this property. We give general bounds for geomdimq whenever is one of the (exponentially many) “distorted” designs constructed in Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]; Des. Codes Cryptogr. 55:131–140, [12]—a class of designs with classical parameters which includes the polarity designs as a very special case. We also show that this class contains designs with the same parameters as PGd(n, q) and geomdimq, for every prime power q and for all values of d and n with 2 ≤ d ≤ n−1. Regarding the polarity designs, we conjecture that their geometric dimension always satisfies our general upper bound with equality, that is, geomdimq for the polarity design with the parameters of PGd(2d, q), but we are only able to establish this result if we restrict ourselves to the special case of “natural” embeddings. More... »

PAGES

7-19

References to SciGraph publications

  • 2011-09. Designs having the parameters of projective and affine spaces in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2013-07. New invariants for incidence structures in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1999-09. Linear Perfect Codes and a Characterization of the Classical Designs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2005-10. A new family of distance-regular graphs with unbounded diameter in INVENTIONES MATHEMATICAE
  • 2006-08. Independent Sets In Association Schemes in COMBINATORICA
  • 2011-08. Recent results on designs with classical parameters in JOURNAL OF GEOMETRY
  • 2010-05. The number of designs with geometric parameters grows exponentially in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2009-05. Polarities, quasi-symmetric designs, and Hamada’s conjecture in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2012-10. A Hamada type characterization of the classical geometric designs in DESIGNS, CODES AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5

    DOI

    http://dx.doi.org/10.1007/s10623-012-9748-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032540734


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, 00185, Rome, RM, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghinelli", 
            "givenName": "Dina", 
            "id": "sg:person.012366444460.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366444460.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Lehrstuhl f\u00fcr Diskrete Mathematik, Optimierung, und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut, Universit\u00e4t Gie\u00dfen, Arndtstrasse 2, 35392, Gie\u00dfen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Metsch", 
            "givenName": "Klaus", 
            "id": "sg:person.015723746007.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10623-008-9249-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000248266", 
              "https://doi.org/10.1007/s10623-008-9249-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(87)90050-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001864339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-009-9299-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004041781", 
              "https://doi.org/10.1007/s10623-009-9299-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-009-9299-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004041781", 
              "https://doi.org/10.1007/s10623-009-9299-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(86)90063-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008944225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-012-9636-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011702149", 
              "https://doi.org/10.1007/s10623-012-9636-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(88)90047-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014200398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcta.2005.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015652368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00493-006-0024-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033269901", 
              "https://doi.org/10.1007/s00493-006-0024-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-005-0442-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035920675", 
              "https://doi.org/10.1007/s00222-005-0442-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-005-0442-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035920675", 
              "https://doi.org/10.1007/s00222-005-0442-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00022-011-0086-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036503130", 
              "https://doi.org/10.1007/s00022-011-0086-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(86)90009-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039316668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-011-9580-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042713024", 
              "https://doi.org/10.1007/s10623-011-9580-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-011-9580-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042713024", 
              "https://doi.org/10.1007/s10623-011-9580-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008314923487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050774092", 
              "https://doi.org/10.1023/a:1008314923487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-010-9429-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051784333", 
              "https://doi.org/10.1007/s10623-010-9429-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/iig.2011.12.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104486786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/iig.2011.12.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104486786"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-07", 
        "datePublishedReg": "2014-07-01", 
        "description": "Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131\u2013140, [11]) used polarities of PG(2d \u2212 1, q) to construct non-classical designs with a hyperplane and the same parameters and same intersection numbers as the classical designs PGd(2d, q), for every prime power q and every integer d \u2265 2. Our main result shows that these properties already characterize their polarity designs. Recently, Jungnickel and Tonchev (Des. Codes Cryptogr. [14] introduced new invariants for simple incidence structures , which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of into projective geometries \u03a0 = PG(n, q), where an embedding means identifying the points of with a point set V in \u03a0 in such a way that every block of is induced as the intersection of V with a suitable subspace of \u03a0. Then the new invariant\u2014which we shall call the geometric dimension geomdimq of \u2014is the smallest value of n for which may be embedded into the n-dimensional projective geometry PG(n, q). The classical designs PGd(n, q) always have the smallest possible geometric dimension among all designs with the same parameters, namely n, and are actually characterized by this property. We give general bounds for geomdimq whenever is one of the (exponentially many) \u201cdistorted\u201d designs constructed in Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131\u2013140, [11]; Des. Codes Cryptogr. 55:131\u2013140, [12]\u2014a class of designs with classical parameters which includes the polarity designs as a very special case. We also show that this class contains designs with the same parameters as PGd(n, q) and geomdimq, for every prime power q and for all values of d and n with 2 \u2264 d \u2264 n\u22121. Regarding the polarity designs, we conjecture that their geometric dimension always satisfies our general upper bound with equality, that is, geomdimq for the polarity design with the parameters of PGd(2d, q), but we are only able to establish this result if we restrict ourselves to the special case of \u201cnatural\u201d embeddings.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10623-012-9748-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "name": "Remarks on polarity designs", 
        "pagination": "7-19", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9b051ce60d05e3177df531c0f4c8b97ef04bffe27724bd7beaff03101baa51c7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-012-9748-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032540734"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-012-9748-5", 
          "https://app.dimensions.ai/details/publication/pub.1032540734"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10623-012-9748-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-012-9748-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Naca75ee5e48a4fbf99af45a6c94cf846
    4 schema:citation sg:pub.10.1007/s00022-011-0086-y
    5 sg:pub.10.1007/s00222-005-0442-3
    6 sg:pub.10.1007/s00493-006-0024-z
    7 sg:pub.10.1007/s10623-008-9249-8
    8 sg:pub.10.1007/s10623-009-9299-6
    9 sg:pub.10.1007/s10623-010-9429-1
    10 sg:pub.10.1007/s10623-011-9580-3
    11 sg:pub.10.1007/s10623-012-9636-z
    12 sg:pub.10.1023/a:1008314923487
    13 https://doi.org/10.1016/0097-3165(86)90009-9
    14 https://doi.org/10.1016/0097-3165(86)90063-4
    15 https://doi.org/10.1016/0097-3165(87)90050-1
    16 https://doi.org/10.1016/0097-3165(88)90047-7
    17 https://doi.org/10.1016/j.jcta.2005.08.006
    18 https://doi.org/10.2140/iig.2011.12.1
    19 schema:datePublished 2014-07
    20 schema:datePublishedReg 2014-07-01
    21 schema:description Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]) used polarities of PG(2d − 1, q) to construct non-classical designs with a hyperplane and the same parameters and same intersection numbers as the classical designs PGd(2d, q), for every prime power q and every integer d ≥ 2. Our main result shows that these properties already characterize their polarity designs. Recently, Jungnickel and Tonchev (Des. Codes Cryptogr. [14] introduced new invariants for simple incidence structures , which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of into projective geometries Π = PG(n, q), where an embedding means identifying the points of with a point set V in Π in such a way that every block of is induced as the intersection of V with a suitable subspace of Π. Then the new invariant—which we shall call the geometric dimension geomdimq of —is the smallest value of n for which may be embedded into the n-dimensional projective geometry PG(n, q). The classical designs PGd(n, q) always have the smallest possible geometric dimension among all designs with the same parameters, namely n, and are actually characterized by this property. We give general bounds for geomdimq whenever is one of the (exponentially many) “distorted” designs constructed in Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]; Des. Codes Cryptogr. 55:131–140, [12]—a class of designs with classical parameters which includes the polarity designs as a very special case. We also show that this class contains designs with the same parameters as PGd(n, q) and geomdimq, for every prime power q and for all values of d and n with 2 ≤ d ≤ n−1. Regarding the polarity designs, we conjecture that their geometric dimension always satisfies our general upper bound with equality, that is, geomdimq for the polarity design with the parameters of PGd(2d, q), but we are only able to establish this result if we restrict ourselves to the special case of “natural” embeddings.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N2424f0c5ab9f44598a89ec0e4f8146dd
    26 Na70a4164ccfe4a75bc47403703f90dc8
    27 sg:journal.1136552
    28 schema:name Remarks on polarity designs
    29 schema:pagination 7-19
    30 schema:productId N43748d05f2f4412a9ccff34b3dc24665
    31 N5438850771394ffca4b76b7c80bebcab
    32 Nd71c842739aa483086a91ca79eff139c
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032540734
    34 https://doi.org/10.1007/s10623-012-9748-5
    35 schema:sdDatePublished 2019-04-10T15:52
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N370680a7005242c0954c9e1e2a3354ca
    38 schema:url http://link.springer.com/10.1007%2Fs10623-012-9748-5
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N2424f0c5ab9f44598a89ec0e4f8146dd schema:volumeNumber 72
    43 rdf:type schema:PublicationVolume
    44 N370680a7005242c0954c9e1e2a3354ca schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N43748d05f2f4412a9ccff34b3dc24665 schema:name doi
    47 schema:value 10.1007/s10623-012-9748-5
    48 rdf:type schema:PropertyValue
    49 N5438850771394ffca4b76b7c80bebcab schema:name dimensions_id
    50 schema:value pub.1032540734
    51 rdf:type schema:PropertyValue
    52 N5ebf41b4430d4248bc5ef90986aae41b rdf:first sg:person.015723746007.47
    53 rdf:rest rdf:nil
    54 Na70a4164ccfe4a75bc47403703f90dc8 schema:issueNumber 1
    55 rdf:type schema:PublicationIssue
    56 Naca75ee5e48a4fbf99af45a6c94cf846 rdf:first sg:person.012366444460.08
    57 rdf:rest Nce519b38571e4ec88f31ff3fbdb4060b
    58 Nce519b38571e4ec88f31ff3fbdb4060b rdf:first sg:person.016273474670.91
    59 rdf:rest N5ebf41b4430d4248bc5ef90986aae41b
    60 Nd71c842739aa483086a91ca79eff139c schema:name readcube_id
    61 schema:value 9b051ce60d05e3177df531c0f4c8b97ef04bffe27724bd7beaff03101baa51c7
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Pure Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1136552 schema:issn 0925-1022
    70 1573-7586
    71 schema:name Designs, Codes and Cryptography
    72 rdf:type schema:Periodical
    73 sg:person.012366444460.08 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    74 schema:familyName Ghinelli
    75 schema:givenName Dina
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366444460.08
    77 rdf:type schema:Person
    78 sg:person.015723746007.47 schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    79 schema:familyName Metsch
    80 schema:givenName Klaus
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47
    82 rdf:type schema:Person
    83 sg:person.016273474670.91 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    84 schema:familyName Jungnickel
    85 schema:givenName Dieter
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    87 rdf:type schema:Person
    88 sg:pub.10.1007/s00022-011-0086-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036503130
    89 https://doi.org/10.1007/s00022-011-0086-y
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s00222-005-0442-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035920675
    92 https://doi.org/10.1007/s00222-005-0442-3
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00493-006-0024-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033269901
    95 https://doi.org/10.1007/s00493-006-0024-z
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s10623-008-9249-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000248266
    98 https://doi.org/10.1007/s10623-008-9249-8
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10623-009-9299-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041781
    101 https://doi.org/10.1007/s10623-009-9299-6
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10623-010-9429-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051784333
    104 https://doi.org/10.1007/s10623-010-9429-1
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10623-011-9580-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042713024
    107 https://doi.org/10.1007/s10623-011-9580-3
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s10623-012-9636-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011702149
    110 https://doi.org/10.1007/s10623-012-9636-z
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1023/a:1008314923487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050774092
    113 https://doi.org/10.1023/a:1008314923487
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0097-3165(86)90009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039316668
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0097-3165(86)90063-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008944225
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0097-3165(87)90050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001864339
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0097-3165(88)90047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014200398
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.jcta.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015652368
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.2140/iig.2011.12.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104486786
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    128 schema:name Lehrstuhl für Diskrete Mathematik, Optimierung, und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
    129 rdf:type schema:Organization
    130 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    131 schema:name Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, 00185, Rome, RM, Italy
    132 rdf:type schema:Organization
    133 https://www.grid.ac/institutes/grid.8664.c schema:alternateName University of Giessen
    134 schema:name Mathematisches Institut, Universität Gießen, Arndtstrasse 2, 35392, Gießen, Germany
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...