# Remarks on polarity designs

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2012-09-25

AUTHORS ABSTRACT

Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]) used polarities of PG(2d − 1, q) to construct non-classical designs with a hyperplane and the same parameters and same intersection numbers as the classical designs PGd(2d, q), for every prime power q and every integer d ≥ 2. Our main result shows that these properties already characterize their polarity designs. Recently, Jungnickel and Tonchev (Des. Codes Cryptogr. [14] introduced new invariants for simple incidence structures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document}, which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} into projective geometries Π = PG(n, q), where an embedding means identifying the points of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} with a point set V in Π in such a way that every block of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} is induced as the intersection of V with a suitable subspace of Π. Then the new invariant—which we shall call the geometric dimension geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} —is the smallest value of n for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} may be embedded into the n-dimensional projective geometry PG(n, q). The classical designs PGd(n, q) always have the smallest possible geometric dimension among all designs with the same parameters, namely n, and are actually characterized by this property. We give general bounds for geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathcal{D}}$$\end{document} whenever \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} is one of the (exponentially many) “distorted” designs constructed in Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]; Des. Codes Cryptogr. 55:131–140, [12]—a class of designs with classical parameters which includes the polarity designs as a very special case. We also show that this class contains designs with the same parameters as PGd(n, q) and geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D} = n + 1}$$\end{document}, for every prime power q and for all values of d and n with 2 ≤ d ≤ n−1. Regarding the polarity designs, we conjecture that their geometric dimension always satisfies our general upper bound with equality, that is, geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D} = 4d}$$\end{document} for the polarity design \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} with the parameters of PGd(2d, q), but we are only able to establish this result if we restrict ourselves to the special case of “natural” embeddings. More... »

PAGES

7-19

### References to SciGraph publications

• 2010-09-14. Designs having the parameters of projective and affine spaces in DESIGNS, CODES AND CRYPTOGRAPHY
• 2012-02-29. New invariants for incidence structures in DESIGNS, CODES AND CRYPTOGRAPHY
• 1999-09. Linear Perfect Codes and a Characterization of the Classical Designs in DESIGNS, CODES AND CRYPTOGRAPHY
• 2005-04-07. A new family of distance-regular graphs with unbounded diameter in INVENTIONES MATHEMATICAE
• 2006-08. Independent Sets In Association Schemes in COMBINATORICA
• 2011-08. Recent results on designs with classical parameters in JOURNAL OF GEOMETRY
• 2009-05-23. The number of designs with geometric parameters grows exponentially in DESIGNS, CODES AND CRYPTOGRAPHY
• 2008-11-26. Polarities, quasi-symmetric designs, and Hamada’s conjecture in DESIGNS, CODES AND CRYPTOGRAPHY
• 2011-11-11. A Hamada type characterization of the classical geometric designs in DESIGNS, CODES AND CRYPTOGRAPHY
• ### Journal

TITLE

Designs, Codes and Cryptography

ISSUE

1

VOLUME

72

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5

DOI

http://dx.doi.org/10.1007/s10623-012-9748-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032540734

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, 00185, Rome, RM, Italy",
"id": "http://www.grid.ac/institutes/grid.7841.a",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, 00185, Rome, RM, Italy"
],
"type": "Organization"
},
"familyName": "Ghinelli",
"givenName": "Dina",
"id": "sg:person.012366444460.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366444460.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lehrstuhl f\u00fcr Diskrete Mathematik, Optimierung, und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany",
"id": "http://www.grid.ac/institutes/grid.7307.3",
"name": [
"Lehrstuhl f\u00fcr Diskrete Mathematik, Optimierung, und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
],
"type": "Organization"
},
"familyName": "Jungnickel",
"givenName": "Dieter",
"id": "sg:person.016273474670.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematisches Institut, Universit\u00e4t Gie\u00dfen, Arndtstrasse 2, 35392, Gie\u00dfen, Germany",
"id": "http://www.grid.ac/institutes/grid.8664.c",
"name": [
"Mathematisches Institut, Universit\u00e4t Gie\u00dfen, Arndtstrasse 2, 35392, Gie\u00dfen, Germany"
],
"type": "Organization"
},
"familyName": "Metsch",
"givenName": "Klaus",
"id": "sg:person.015723746007.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10623-012-9636-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011702149",
"https://doi.org/10.1007/s10623-012-9636-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00022-011-0086-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036503130",
"https://doi.org/10.1007/s00022-011-0086-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-008-9249-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000248266",
"https://doi.org/10.1007/s10623-008-9249-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-011-9580-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042713024",
"https://doi.org/10.1007/s10623-011-9580-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008314923487",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050774092",
"https://doi.org/10.1023/a:1008314923487"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00493-006-0024-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033269901",
"https://doi.org/10.1007/s00493-006-0024-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-010-9429-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051784333",
"https://doi.org/10.1007/s10623-010-9429-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-009-9299-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004041781",
"https://doi.org/10.1007/s10623-009-9299-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-005-0442-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035920675",
"https://doi.org/10.1007/s00222-005-0442-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-09-25",
"datePublishedReg": "2012-09-25",
"description": "Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131\u2013140, [11]) used polarities of PG(2d \u2212 1, q) to construct non-classical designs with a hyperplane and the same parameters and same intersection numbers as the classical designs PGd(2d, q), for every prime power q and every integer d\u00a0\u2265 2. Our main result shows that these properties already characterize their polarity designs. Recently, Jungnickel and Tonchev (Des. Codes Cryptogr. [14] introduced new invariants for simple incidence structures \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document}, which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} into projective geometries \u03a0 = PG(n, q), where an embedding means identifying the points of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} with a point set V in \u03a0 in such a way that every block of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} is induced as the intersection of V with a suitable subspace of \u03a0. Then the new invariant\u2014which we shall call the geometric dimension geomdimq\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} \u2014is the smallest value of n for which \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} may be embedded into the n-dimensional projective geometry PG(n, q). The classical designs PGd(n, q) always have the smallest possible geometric dimension among all designs with the same parameters, namely n, and are actually characterized by this property. We give general bounds for geomdimq\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${ \\mathcal{D}}$$\\end{document} whenever \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} is one of the (exponentially many) \u201cdistorted\u201d designs constructed in Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131\u2013140, [11]; Des. Codes Cryptogr. 55:131\u2013140, [12]\u2014a class of designs with classical parameters which includes the polarity designs as a very special case. We also show that this class contains designs with the same parameters as PGd(n, q) and geomdimq\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D} = n + 1}$$\\end{document}, for every prime power q and for all values of d and n with 2\u00a0\u2264 d\u00a0\u2264 n\u22121. Regarding the polarity designs, we conjecture that their geometric dimension always satisfies our general upper bound with equality, that is, geomdimq\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D} = 4d}$$\\end{document} for the polarity design \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{D}}$$\\end{document} with the parameters of PGd(2d, q), but we are only able to establish this result if we restrict ourselves to the special case of \u201cnatural\u201d embeddings.",
"genre": "article",
"id": "sg:pub.10.1007/s10623-012-9748-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136552",
"issn": [
"0925-1022",
"1573-7586"
],
"name": "Designs, Codes and Cryptography",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"non-classical design",
"same intersection numbers",
"prime power q",
"intersection numbers",
"polarity designs",
"classical design",
"main results",
"Tonchev",
"power q",
"hyperplane",
"Jungnickel",
"design",
"same parameters",
"parameters",
"number",
"properties",
"results",
"polarity"
],
"name": "Remarks on polarity designs",
"pagination": "7-19",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032540734"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10623-012-9748-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10623-012-9748-5",
"https://app.dimensions.ai/details/publication/pub.1032540734"
],
"sdDataset": "articles",
"sdDatePublished": "2021-12-01T19:26",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_557.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10623-012-9748-5"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-012-9748-5'

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      52 URIs      35 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author N7f9c1d2e02264c48a7df9a6df3f441d9
4 schema:citation sg:pub.10.1007/s00022-011-0086-y
5 sg:pub.10.1007/s00222-005-0442-3
6 sg:pub.10.1007/s00493-006-0024-z
7 sg:pub.10.1007/s10623-008-9249-8
8 sg:pub.10.1007/s10623-009-9299-6
9 sg:pub.10.1007/s10623-010-9429-1
10 sg:pub.10.1007/s10623-011-9580-3
11 sg:pub.10.1007/s10623-012-9636-z
12 sg:pub.10.1023/a:1008314923487
13 schema:datePublished 2012-09-25
14 schema:datePublishedReg 2012-09-25
15 schema:description Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]) used polarities of PG(2d − 1, q) to construct non-classical designs with a hyperplane and the same parameters and same intersection numbers as the classical designs PGd(2d, q), for every prime power q and every integer d ≥ 2. Our main result shows that these properties already characterize their polarity designs. Recently, Jungnickel and Tonchev (Des. Codes Cryptogr. [14] introduced new invariants for simple incidence structures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document}, which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} into projective geometries Π = PG(n, q), where an embedding means identifying the points of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} with a point set V in Π in such a way that every block of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} is induced as the intersection of V with a suitable subspace of Π. Then the new invariant—which we shall call the geometric dimension geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} —is the smallest value of n for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} may be embedded into the n-dimensional projective geometry PG(n, q). The classical designs PGd(n, q) always have the smallest possible geometric dimension among all designs with the same parameters, namely n, and are actually characterized by this property. We give general bounds for geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathcal{D}}$$\end{document} whenever \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} is one of the (exponentially many) “distorted” designs constructed in Jungnickel and Tonchev (Des. Codes Cryptogr. 51:131–140, [11]; Des. Codes Cryptogr. 55:131–140, [12]—a class of designs with classical parameters which includes the polarity designs as a very special case. We also show that this class contains designs with the same parameters as PGd(n, q) and geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D} = n + 1}$$\end{document}, for every prime power q and for all values of d and n with 2 ≤ d ≤ n−1. Regarding the polarity designs, we conjecture that their geometric dimension always satisfies our general upper bound with equality, that is, geomdimq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D} = 4d}$$\end{document} for the polarity design \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} with the parameters of PGd(2d, q), but we are only able to establish this result if we restrict ourselves to the special case of “natural” embeddings.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ned677260af9e4714bb2481fc17a8fa6a
20 Nf5c798038f814d288a41106dd6c42c3c
21 sg:journal.1136552
22 schema:keywords Jungnickel
23 Tonchev
24 classical design
25 design
26 hyperplane
27 intersection numbers
28 main results
29 non-classical design
30 number
31 parameters
32 polarity
33 polarity designs
34 power q
35 prime power q
36 properties
37 results
38 same intersection numbers
39 same parameters
40 schema:name Remarks on polarity designs
41 schema:pagination 7-19
42 schema:productId N4c50a1c83691443e95531e58fb823539
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032540734
45 https://doi.org/10.1007/s10623-012-9748-5
46 schema:sdDatePublished 2021-12-01T19:26
48 schema:sdPublisher N089ef84fb48c48abb09afc6880485fd3
49 schema:url https://doi.org/10.1007/s10623-012-9748-5
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N089ef84fb48c48abb09afc6880485fd3 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N4c50a1c83691443e95531e58fb823539 schema:name dimensions_id
56 schema:value pub.1032540734
57 rdf:type schema:PropertyValue
59 schema:value 10.1007/s10623-012-9748-5
60 rdf:type schema:PropertyValue
61 N7cf1c9f3e2a44fc1b75f785ea7534a10 rdf:first sg:person.015723746007.47
62 rdf:rest rdf:nil
63 N7f9c1d2e02264c48a7df9a6df3f441d9 rdf:first sg:person.012366444460.08
64 rdf:rest Nf3269a817a494d82984b4b089ca2d9dd
66 rdf:type schema:PublicationVolume
67 Nf3269a817a494d82984b4b089ca2d9dd rdf:first sg:person.016273474670.91
68 rdf:rest N7cf1c9f3e2a44fc1b75f785ea7534a10
69 Nf5c798038f814d288a41106dd6c42c3c schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1136552 schema:issn 0925-1022
78 1573-7586
79 schema:name Designs, Codes and Cryptography
80 schema:publisher Springer Nature
81 rdf:type schema:Periodical
82 sg:person.012366444460.08 schema:affiliation grid-institutes:grid.7841.a
83 schema:familyName Ghinelli
84 schema:givenName Dina
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366444460.08
86 rdf:type schema:Person
87 sg:person.015723746007.47 schema:affiliation grid-institutes:grid.8664.c
88 schema:familyName Metsch
89 schema:givenName Klaus
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47
91 rdf:type schema:Person
92 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.7307.3
93 schema:familyName Jungnickel
94 schema:givenName Dieter
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
96 rdf:type schema:Person
97 sg:pub.10.1007/s00022-011-0086-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036503130
98 https://doi.org/10.1007/s00022-011-0086-y
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00222-005-0442-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035920675
101 https://doi.org/10.1007/s00222-005-0442-3
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00493-006-0024-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033269901
104 https://doi.org/10.1007/s00493-006-0024-z
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10623-008-9249-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000248266
107 https://doi.org/10.1007/s10623-008-9249-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10623-009-9299-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041781
110 https://doi.org/10.1007/s10623-009-9299-6
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10623-010-9429-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051784333
113 https://doi.org/10.1007/s10623-010-9429-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10623-011-9580-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042713024
116 https://doi.org/10.1007/s10623-011-9580-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10623-012-9636-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011702149
119 https://doi.org/10.1007/s10623-012-9636-z
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/a:1008314923487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050774092
122 https://doi.org/10.1023/a:1008314923487
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.7307.3 schema:alternateName Lehrstuhl für Diskrete Mathematik, Optimierung, und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
125 schema:name Lehrstuhl für Diskrete Mathematik, Optimierung, und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
126 rdf:type schema:Organization
127 grid-institutes:grid.7841.a schema:alternateName Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, 00185, Rome, RM, Italy
128 schema:name Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, 00185, Rome, RM, Italy
129 rdf:type schema:Organization
130 grid-institutes:grid.8664.c schema:alternateName Mathematisches Institut, Universität Gießen, Arndtstrasse 2, 35392, Gießen, Germany
131 schema:name Mathematisches Institut, Universität Gießen, Arndtstrasse 2, 35392, Gießen, Germany
132 rdf:type schema:Organization