The number of designs with geometric parameters grows exponentially View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05-23

AUTHORS

Dieter Jungnickel, Vladimir D. Tonchev

ABSTRACT

It is well-known that the number of 2-designs with the parameters of a classical point-hyperplane design PGn-1(n, q) grows exponentially. Here we extend this result to the number of 2-designs with the parameters of PGd(n, q), where 2 ≤ d ≤ n − 1. We also establish a characterization of the classical geometric designs in terms of hyperplanes and, in the special case d = 2, also in terms of lines. Finally, we shall discuss some interesting configurations of hyperplanes arising in designs with geometric parameters. More... »

PAGES

131-140

References to SciGraph publications

  • 2008-11-26. Polarities, quasi-symmetric designs, and Hamada’s conjecture in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1993-05. Some characterizations of quasi-symmetric designs with a spread in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2002-10. A New Bound on the Number of Designs with Classical Affine Parameters in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1994-07. Automorphisms and Isomorphisms of Symmetric and Affine Designs in JOURNAL OF ALGEBRAIC COMBINATORICS
  • 1984-06. The number of designs with classical parameters grows exponentially in GEOMETRIAE DEDICATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-009-9299-6

    DOI

    http://dx.doi.org/10.1007/s10623-009-9299-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004041781


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Diskrete Mathematik, Optimierung und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Lehrstuhl f\u00fcr Diskrete Mathematik, Optimierung und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Michigan Technological University, 49931, Houghton, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.259979.9", 
              "name": [
                "Department of Mathematical Sciences, Michigan Technological University, 49931, Houghton, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tonchev", 
            "givenName": "Vladimir D.", 
            "id": "sg:person.016227663377.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016227663377.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00146828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047644971", 
              "https://doi.org/10.1007/bf00146828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-008-9249-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000248266", 
              "https://doi.org/10.1007/s10623-008-9249-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016502619995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041465213", 
              "https://doi.org/10.1023/a:1016502619995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01388414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780886", 
              "https://doi.org/10.1007/bf01388414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022416002358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006996383", 
              "https://doi.org/10.1023/a:1022416002358"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-05-23", 
        "datePublishedReg": "2009-05-23", 
        "description": "It is well-known that the number of 2-designs with the parameters of a classical point-hyperplane design PGn-1(n, q) grows exponentially. Here we extend this result to the number of 2-designs with the parameters of PGd(n, q), where 2 \u2264\u00a0d \u2264\u00a0n \u2212 1. We also establish a characterization of the classical geometric designs in terms of hyperplanes and, in the special case d =\u00a02, also in terms of lines. Finally, we shall discuss some interesting configurations of hyperplanes arising in designs with geometric parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10623-009-9299-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "number", 
          "lines", 
          "parameters", 
          "results", 
          "design", 
          "terms", 
          "characterization", 
          "number of designs", 
          "case d", 
          "configuration", 
          "geometric design", 
          "special case d", 
          "geometric parameters", 
          "terms of line", 
          "hyperplane", 
          "interesting configurations", 
          "classical point-hyperplane design", 
          "point-hyperplane design", 
          "classical geometric designs", 
          "terms of hyperplanes"
        ], 
        "name": "The number of designs with geometric parameters grows exponentially", 
        "pagination": "131-140", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004041781"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-009-9299-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-009-9299-6", 
          "https://app.dimensions.ai/details/publication/pub.1004041781"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10623-009-9299-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-009-9299-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-009-9299-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-009-9299-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-009-9299-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      22 PREDICATES      50 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-009-9299-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8d4f53793cf343a98d65fa0393522d5e
    4 schema:citation sg:pub.10.1007/bf00146828
    5 sg:pub.10.1007/bf01388414
    6 sg:pub.10.1007/s10623-008-9249-8
    7 sg:pub.10.1023/a:1016502619995
    8 sg:pub.10.1023/a:1022416002358
    9 schema:datePublished 2009-05-23
    10 schema:datePublishedReg 2009-05-23
    11 schema:description It is well-known that the number of 2-designs with the parameters of a classical point-hyperplane design PGn-1(n, q) grows exponentially. Here we extend this result to the number of 2-designs with the parameters of PGd(n, q), where 2 ≤ d ≤ n − 1. We also establish a characterization of the classical geometric designs in terms of hyperplanes and, in the special case d = 2, also in terms of lines. Finally, we shall discuss some interesting configurations of hyperplanes arising in designs with geometric parameters.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N8ec942ceefe54ffea849e7bc8d1cff7d
    16 Nb827fc9d33464404b8db441c98a3d436
    17 sg:journal.1136552
    18 schema:keywords case d
    19 characterization
    20 classical geometric designs
    21 classical point-hyperplane design
    22 configuration
    23 design
    24 geometric design
    25 geometric parameters
    26 hyperplane
    27 interesting configurations
    28 lines
    29 number
    30 number of designs
    31 parameters
    32 point-hyperplane design
    33 results
    34 special case d
    35 terms
    36 terms of hyperplanes
    37 terms of line
    38 schema:name The number of designs with geometric parameters grows exponentially
    39 schema:pagination 131-140
    40 schema:productId N2797821d57654a8cbe394fb8b590f3e3
    41 Nac2907a785d24b86ae55ca77f42dc76e
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041781
    43 https://doi.org/10.1007/s10623-009-9299-6
    44 schema:sdDatePublished 2021-12-01T19:23
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Nc13cf54d5f9f481a81c854029c93d1f9
    47 schema:url https://doi.org/10.1007/s10623-009-9299-6
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N2181d7743f9c4518beded474fe68d620 rdf:first sg:person.016227663377.94
    52 rdf:rest rdf:nil
    53 N2797821d57654a8cbe394fb8b590f3e3 schema:name dimensions_id
    54 schema:value pub.1004041781
    55 rdf:type schema:PropertyValue
    56 N8d4f53793cf343a98d65fa0393522d5e rdf:first sg:person.016273474670.91
    57 rdf:rest N2181d7743f9c4518beded474fe68d620
    58 N8ec942ceefe54ffea849e7bc8d1cff7d schema:volumeNumber 55
    59 rdf:type schema:PublicationVolume
    60 Nac2907a785d24b86ae55ca77f42dc76e schema:name doi
    61 schema:value 10.1007/s10623-009-9299-6
    62 rdf:type schema:PropertyValue
    63 Nb827fc9d33464404b8db441c98a3d436 schema:issueNumber 2-3
    64 rdf:type schema:PublicationIssue
    65 Nc13cf54d5f9f481a81c854029c93d1f9 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1136552 schema:issn 0925-1022
    74 1573-7586
    75 schema:name Designs, Codes and Cryptography
    76 schema:publisher Springer Nature
    77 rdf:type schema:Periodical
    78 sg:person.016227663377.94 schema:affiliation grid-institutes:grid.259979.9
    79 schema:familyName Tonchev
    80 schema:givenName Vladimir D.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016227663377.94
    82 rdf:type schema:Person
    83 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.7307.3
    84 schema:familyName Jungnickel
    85 schema:givenName Dieter
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    87 rdf:type schema:Person
    88 sg:pub.10.1007/bf00146828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047644971
    89 https://doi.org/10.1007/bf00146828
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01388414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780886
    92 https://doi.org/10.1007/bf01388414
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s10623-008-9249-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000248266
    95 https://doi.org/10.1007/s10623-008-9249-8
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1023/a:1016502619995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041465213
    98 https://doi.org/10.1023/a:1016502619995
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1023/a:1022416002358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006996383
    101 https://doi.org/10.1023/a:1022416002358
    102 rdf:type schema:CreativeWork
    103 grid-institutes:grid.259979.9 schema:alternateName Department of Mathematical Sciences, Michigan Technological University, 49931, Houghton, MI, USA
    104 schema:name Department of Mathematical Sciences, Michigan Technological University, 49931, Houghton, MI, USA
    105 rdf:type schema:Organization
    106 grid-institutes:grid.7307.3 schema:alternateName Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
    107 schema:name Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...